// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- //**************************************************************** // Function that will calculate the desired direction to fly and distance //**************************************************************** static byte navigate() { if(next_WP.lat == 0){ return 0; } // waypoint distance from plane // ---------------------------- wp_distance = get_distance(¤t_loc, &next_WP); if (wp_distance < 0){ //gcs_send_text_P(SEVERITY_HIGH,PSTR(" WP error - distance < 0")); //Serial.println(wp_distance,DEC); //print_current_waypoints(); return 0; } // target_bearing is where we should be heading // -------------------------------------------- target_bearing = get_bearing(¤t_loc, &next_WP); return 1; } static bool check_missed_wp() { int32_t temp = target_bearing - original_target_bearing; temp = wrap_180(temp); return (abs(temp) > 10000); //we pased the waypoint by 10 ° } // ------------------------------ // long_error, lat_error static void calc_location_error(struct Location *next_loc) { /* Becuase we are using lat and lon to do our distance errors here's a quick chart: 100 = 1m 1000 = 11m = 36 feet 1800 = 19.80m = 60 feet 3000 = 33m 10000 = 111m pitch_max = 22° (2200) */ // X ROLL long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST // Y PITCH lat_error = next_loc->lat - current_loc.lat; // 0 - 500 = -500 pitch NORTH } #define NAV_ERR_MAX 800 static void calc_loiter(int x_error, int y_error) { x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX); y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX); int x_target_speed = g.pi_loiter_lon.get_pi(x_error, dTnav); int y_target_speed = g.pi_loiter_lat.get_pi(y_error, dTnav); // find the rates: float temp = radians((float)g_gps->ground_course/100.0); #ifdef OPTFLOW_ENABLED // calc the cos of the error to tell how fast we are moving towards the target in cm if(g.optflow_enabled && current_loc.alt < 500 && g_gps->ground_speed < 150){ x_actual_speed = optflow.vlon * 10; y_actual_speed = optflow.vlat * 10; }else{ x_actual_speed = (float)g_gps->ground_speed * sin(temp); y_actual_speed = (float)g_gps->ground_speed * cos(temp); } #else x_actual_speed = (float)g_gps->ground_speed * sin(temp); y_actual_speed = (float)g_gps->ground_speed * cos(temp); #endif y_rate_error = y_target_speed - y_actual_speed; // 413 y_rate_error = constrain(y_rate_error, -250, 250); // added a rate error limit to keep pitching down to a minimum nav_lat = g.pi_nav_lat.get_pi(y_rate_error, dTnav); nav_lat = constrain(nav_lat, -3500, 3500); x_rate_error = x_target_speed - x_actual_speed; x_rate_error = constrain(x_rate_error, -250, 250); nav_lon = g.pi_nav_lon.get_pi(x_rate_error, dTnav); nav_lon = constrain(nav_lon, -3500, 3500); } static void calc_loiter2(int x_error, int y_error) { static int last_x_error = 0; static int last_y_error = 0; x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX); y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX); int x_target_speed = g.pi_loiter_lon.get_pi(x_error, dTnav); int y_target_speed = g.pi_loiter_lat.get_pi(y_error, dTnav); // find the rates: x_actual_speed = (float)(last_x_error - x_error)/dTnav; y_actual_speed = (float)(last_y_error - y_error)/dTnav; // save speeds last_x_error = x_error; last_y_error = y_error; y_rate_error = y_target_speed - y_actual_speed; // 413 y_rate_error = constrain(y_rate_error, -250, 250); // added a rate error limit to keep pitching down to a minimum nav_lat = g.pi_nav_lat.get_pi(y_rate_error, dTnav); nav_lat = constrain(nav_lat, -3500, 3500); x_rate_error = x_target_speed - x_actual_speed; x_rate_error = constrain(x_rate_error, -250, 250); nav_lon = g.pi_nav_lon.get_pi(x_rate_error, dTnav); nav_lon = constrain(nav_lon, -3500, 3500); } // nav_roll, nav_pitch static void calc_loiter_pitch_roll() { //float temp = radians((float)(9000 - (dcm.yaw_sensor))/100.0); //float _cos_yaw_x = cos(temp); //float _sin_yaw_y = sin(temp); //Serial.printf("ys %ld, cx %1.4f, _cx %1.4f | sy %1.4f, _sy %1.4f\n", dcm.yaw_sensor, cos_yaw_x, _cos_yaw_x, sin_yaw_y, _sin_yaw_y); // rotate the vector nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x; nav_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y; // flip pitch because forward is negative nav_pitch = -nav_pitch; } static void calc_nav_rate(int max_speed) { /* |< WP Radius 0 1 2 3 4 5 6 7 8m ...|...|...|...|...|...|...|...| 100 | 200 300 400cm/s | +|+ |< we should slow to 1.5 m/s as we hit the target */ // max_speed is default 400 or 4m/s // (wp_distance * 50) = 1/2 of the distance converted to speed // wp_distance is always in m/s and not cm/s - I know it's stupid that way // for example 4m from target = 200cm/s speed // we choose the lowest speed based on disance max_speed = min(max_speed, (wp_distance * 50)); // limit the ramp up of the speed // waypoint_speed_gov is reset to 0 at each new WP command if(waypoint_speed_gov < max_speed){ waypoint_speed_gov += (int)(100.0 * dTnav); // increase at 1.5/ms // go at least 50cm/s max_speed = max(50, waypoint_speed_gov); // limit with governer max_speed = min(max_speed, waypoint_speed_gov); } // XXX target_angle should be the original desired target angle! float temp = radians((target_bearing - g_gps->ground_course)/100.0); // push us towards the original track update_crosstrack(); // heading laterally, we want a zero speed here x_actual_speed = -sin(temp) * (float)g_gps->ground_speed; x_rate_error = crosstrack_error -x_actual_speed; x_rate_error = constrain(x_rate_error, -800, 800); nav_lon = constrain(g.pi_nav_lon.get_pi(x_rate_error, dTnav), -3500, 3500); // heading towards target y_actual_speed = cos(temp) * (float)g_gps->ground_speed; y_rate_error = max_speed - y_actual_speed; // 413 y_rate_error = constrain(y_rate_error, -800, 800); // added a rate error limit to keep pitching down to a minimum nav_lat = constrain(g.pi_nav_lat.get_pi(y_rate_error, dTnav), -3500, 3500); // 400cm/s * 3 = 1200 or 12 deg pitch // 800cm/s * 3 = 2400 or 24 deg pitch MAX // nav_lat and nav_lon will be rotated to the angle of the quad in calc_nav_pitch_roll() /*Serial.printf("max_speed: %d, xspeed: %d, yspeed: %d, x_re: %d, y_re: %d, nav_lon: %ld, nav_lat: %ld ", max_speed, x_actual_speed, y_actual_speed, x_rate_error, y_rate_error, nav_lon, nav_lat);*/ } static void update_crosstrack(void) { // Crosstrack Error // ---------------- if (cross_track_test() < 5000) { // If we are too far off or too close we don't do track following crosstrack_error = sin(radians((target_bearing - original_target_bearing) / 100)) * wp_distance; // Meters we are off track line crosstrack_error = constrain(crosstrack_error * 4, -1200, 1200); } } static long cross_track_test() { long temp = target_bearing - original_target_bearing; temp = wrap_180(temp); return abs(temp); } // nav_roll, nav_pitch static void calc_nav_pitch_roll() { float temp = radians((float)(9000 - (dcm.yaw_sensor - original_target_bearing))/100.0); float _cos_yaw_x = cos(temp); float _sin_yaw_y = sin(temp); // rotate the vector nav_roll = (float)nav_lon * _sin_yaw_y - (float)nav_lat * _cos_yaw_x; nav_pitch = (float)nav_lon * _cos_yaw_x + (float)nav_lat * _sin_yaw_y; // flip pitch because forward is negative nav_pitch = -nav_pitch; /*Serial.printf("_cos_yaw_x:%1.4f, _sin_yaw_y:%1.4f, nav_roll:%ld, nav_pitch:%ld\n", _cos_yaw_x, _sin_yaw_y, nav_roll, nav_pitch);*/ } static int32_t get_altitude_error() { return next_WP.alt - current_loc.alt; } /*static int get_loiter_angle() { float power; int angle; if(wp_distance <= g.loiter_radius){ power = float(wp_distance) / float(g.loiter_radius); power = constrain(power, 0.5, 1); angle = 90.0 * (2.0 + power); }else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){ power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE); power = constrain(power, 0.5, 1); //power = constrain(power, 0, 1); angle = power * 90; } return angle; }*/ static int32_t wrap_360(int32_t error) { if (error > 36000) error -= 36000; if (error < 0) error += 36000; return error; } static int32_t wrap_180(int32_t error) { if (error > 18000) error -= 36000; if (error < -18000) error += 36000; return error; } /* static int32_t get_crosstrack_correction(void) { // Crosstrack Error // ---------------- if (cross_track_test() < 9000) { // If we are too far off or too close we don't do track following // Meters we are off track line float error = sin(radians((target_bearing - crosstrack_bearing) / (float)100)) * (float)wp_distance; // take meters * 100 to get adjustment to nav_bearing int32_t _crosstrack_correction = g.pi_crosstrack.get_pi(error, dTnav) * 100; // constrain answer to 30° to avoid overshoot return constrain(_crosstrack_correction, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get()); } return 0; } */ /* static int32_t cross_track_test() { int32_t temp = wrap_180(target_bearing - crosstrack_bearing); return abs(temp); } */ /* static void reset_crosstrack() { crosstrack_bearing = get_bearing(¤t_loc, &next_WP); // Used for track following } */ /*static int32_t get_altitude_above_home(void) { // This is the altitude above the home location // The GPS gives us altitude at Sea Level // if you slope soar, you should see a negative number sometimes // ------------------------------------------------------------- return current_loc.alt - home.alt; } */ // distance is returned in meters static int32_t get_distance(struct Location *loc1, struct Location *loc2) { //if(loc1->lat == 0 || loc1->lng == 0) // return -1; //if(loc2->lat == 0 || loc2->lng == 0) // return -1; float dlat = (float)(loc2->lat - loc1->lat); float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown; return sqrt(sq(dlat) + sq(dlong)) * .01113195; } /* static int32_t get_alt_distance(struct Location *loc1, struct Location *loc2) { return abs(loc1->alt - loc2->alt); } */ static int32_t get_bearing(struct Location *loc1, struct Location *loc2) { int32_t off_x = loc2->lng - loc1->lng; int32_t off_y = (loc2->lat - loc1->lat) * scaleLongUp; int32_t bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; if (bearing < 0) bearing += 36000; return bearing; }