/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- static int16_t get_stabilize_roll(int32_t target_angle) { // angle error target_angle = wrap_180(target_angle - ahrs.roll_sensor); #if FRAME_CONFIG == HELI_FRAME // limit the error we're feeding to the PID target_angle = constrain(target_angle, -4500, 4500); // convert to desired Rate: target_angle = g.pi_stabilize_roll.get_pi(target_angle, G_Dt); // output control: return constrain(target_angle, -4500, 4500); #else // convert to desired Rate: int32_t target_rate = g.pi_stabilize_roll.get_p(target_angle); int16_t i_stab; if(abs(ahrs.roll_sensor) < 500){ target_angle = constrain(target_angle, -500, 500); i_stab = g.pi_stabilize_roll.get_i(target_angle, G_Dt); }else{ i_stab = g.pi_stabilize_roll.get_integrator(); } return get_rate_roll(target_rate) + i_stab; #endif } static int16_t get_stabilize_pitch(int32_t target_angle) { // angle error target_angle = wrap_180(target_angle - ahrs.pitch_sensor); #if FRAME_CONFIG == HELI_FRAME // limit the error we're feeding to the PID target_angle = constrain(target_angle, -4500, 4500); // convert to desired Rate: target_angle = g.pi_stabilize_pitch.get_pi(target_angle, G_Dt); // output control: return constrain(target_angle, -4500, 4500); #else // convert to desired Rate: int32_t target_rate = g.pi_stabilize_pitch.get_p(target_angle); int16_t i_stab; if(abs(ahrs.roll_sensor) < 500){ target_angle = constrain(target_angle, -500, 500); i_stab = g.pi_stabilize_pitch.get_i(target_angle, G_Dt); }else{ i_stab = g.pi_stabilize_pitch.get_integrator(); } return get_rate_pitch(target_rate) + i_stab; #endif } static int16_t get_stabilize_yaw(int32_t target_angle) { int32_t target_rate,i_term; int32_t angle_error; int32_t output; // angle error angle_error = wrap_180(target_angle - ahrs.yaw_sensor); // limit the error we're feeding to the PID #if FRAME_CONFIG == HELI_FRAME angle_error = constrain(angle_error, -4500, 4500); #else angle_error = constrain(angle_error, -4000, 4000); #endif // convert angle error to desired Rate: target_rate = g.pi_stabilize_yaw.get_p(angle_error); i_term = g.pi_stabilize_yaw.get_i(angle_error, G_Dt); // do not use rate controllers for helicotpers with external gyros #if FRAME_CONFIG == HELI_FRAME if(!motors.ext_gyro_enabled){ output = get_rate_yaw(target_rate) + i_term; }else{ output = constrain((target_rate + i_term), -4500, 4500); } #else output = get_rate_yaw(target_rate) + i_term; #endif #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID logging is on and we are tuning the yaw if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) { log_counter++; if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_YAW_KP, angle_error, target_rate, i_term, 0, output, tuning_value); } } #endif // ensure output does not go beyond barries of what an int16_t can hold return constrain(output,-32000,32000); } static int16_t get_acro_roll(int32_t target_rate) { target_rate = target_rate * g.acro_p; return get_rate_roll(target_rate); } static int16_t get_acro_pitch(int32_t target_rate) { target_rate = target_rate * g.acro_p; return get_rate_pitch(target_rate); } static int16_t get_acro_yaw(int32_t target_rate) { static int32_t last_target_rate = 0; // last iteration's target rate int32_t p,i,d; // used to capture pid values for logging int32_t rate_error; // current yaw rate error int32_t current_rate; // current real yaw rate int32_t decel_boost; // gain scheduling if we are overshooting int32_t output; // output to rate controller target_rate = g.pi_stabilize_yaw.get_p(target_rate); current_rate = omega.z * DEGX100; rate_error = target_rate - current_rate; //Gain Scheduling: //If the yaw input is to the right, but stick is moving to the middle //and actual rate is greater than the target rate then we are //going to overshoot the yaw target to the left side, so we should //strengthen the yaw output to slow down the yaw! #if (FRAME_CONFIG == HELI_FRAME || FRAME_CONFIG == TRI_FRAME) if ( target_rate > 0 && last_target_rate > target_rate && rate_error < 0 ){ decel_boost = 1; } else if (target_rate < 0 && last_target_rate < target_rate && rate_error > 0 ){ decel_boost = 1; } else if (target_rate == 0 && abs(current_rate) > 1000){ decel_boost = 1; } else { decel_boost = 0; } last_target_rate = target_rate; #else decel_boost = 0; #endif // separately calculate p, i, d values for logging // we will use d=0, and hold i at it's last value // since manual inputs are never steady state p = g.pid_rate_yaw.get_p(rate_error); i = g.pid_rate_yaw.get_integrator(); d = 0; if (decel_boost){ p *= 2; } output = p+i+d; // output control: // constrain output output = constrain(output, -4500, 4500); #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID loggins is on and we are tuning the yaw if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) { log_counter++; if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value); } } #endif return output; } static int16_t get_rate_roll(int32_t target_rate) { static int32_t last_rate = 0; // previous iterations rate int32_t p,i,d; // used to capture pid values for logging int32_t current_rate; // this iteration's rate int32_t rate_error; // simply target_rate - current_rate int32_t rate_d; // roll's acceleration int32_t output; // output from pid controller int32_t rate_d_dampener; // value to dampen output based on acceleration // get current rate current_rate = (omega.x * DEGX100); // calculate and filter the acceleration rate_d = roll_rate_d_filter.apply(current_rate - last_rate); // store rate for next iteration last_rate = current_rate; // call pid controller rate_error = target_rate - current_rate; p = g.pid_rate_roll.get_p(rate_error); i = g.pid_rate_roll.get_i(rate_error, G_Dt); d = g.pid_rate_roll.get_d(rate_error, G_Dt); output = p + i + d; // Dampening output with D term rate_d_dampener = rate_d * roll_scale_d; rate_d_dampener = constrain(rate_d_dampener, -400, 400); output -= rate_d_dampener; // constrain output output = constrain(output, -5000, 5000); #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { log_counter++; if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_RATE_KP, rate_error, p, i, d-rate_d_dampener, output, tuning_value); } } #endif // output control return output; } static int16_t get_rate_pitch(int32_t target_rate) { static int32_t last_rate = 0; // previous iterations rate int32_t p,i,d; // used to capture pid values for logging int32_t current_rate; // this iteration's rate int32_t rate_error; // simply target_rate - current_rate int32_t rate_d; // roll's acceleration int32_t output; // output from pid controller int32_t rate_d_dampener; // value to dampen output based on acceleration // get current rate current_rate = (omega.y * DEGX100); // calculate and filter the acceleration rate_d = pitch_rate_d_filter.apply(current_rate - last_rate); // store rate for next iteration last_rate = current_rate; // call pid controller rate_error = target_rate - current_rate; p = g.pid_rate_pitch.get_p(rate_error); i = g.pid_rate_pitch.get_i(rate_error, G_Dt); d = g.pid_rate_pitch.get_d(rate_error, G_Dt); output = p + i + d; // Dampening output with D term rate_d_dampener = rate_d * pitch_scale_d; rate_d_dampener = constrain(rate_d_dampener, -400, 400); output -= rate_d_dampener; // constrain output output = constrain(output, -5000, 5000); #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) { log_counter++; if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_RATE_KP+100, rate_error, p, i, d-rate_d_dampener, output, tuning_value); } } #endif // output control return output; } static int16_t get_rate_yaw(int32_t target_rate) { int32_t p,i,d; // used to capture pid values for logging int32_t rate_error; int32_t output; // rate control rate_error = target_rate - (omega.z * DEGX100); // separately calculate p, i, d values for logging p = g.pid_rate_yaw.get_p(rate_error); i = g.pid_rate_yaw.get_i(rate_error, G_Dt); d = g.pid_rate_yaw.get_d(rate_error, G_Dt); output = p+i+d; #if FRAME_CONFIG == HELI_FRAME output = constrain(output, -4500, 4500); #else // output control: int16_t yaw_limit = 1900 + abs(g.rc_4.control_in); // constrain output output = constrain(output, -yaw_limit, yaw_limit); #endif #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID loggins is on and we are tuning the yaw if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) { log_counter++; if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value); } } #endif // constrain output return output; } static int16_t get_nav_throttle(int32_t z_error) { int16_t z_rate_error, z_target_speed, output; // a small boost for alt control to improve takeoff //int16_t boost_p = constrain(z_error >> 1, -10, 50); // convert to desired Rate: z_target_speed = g.pi_alt_hold.get_p(z_error); z_target_speed = constrain(z_target_speed, -250, 250); // limit error to prevent I term wind up z_error = constrain(z_error, -400, 400); // compensates throttle setpoint error for hovering int16_t i_hold = g.pi_alt_hold.get_i(z_error, .02); // calculate rate error #if INERTIAL_NAV == ENABLED z_rate_error = z_target_speed - accels_velocity.z; // calc the speed error #else z_rate_error = z_target_speed - climb_rate; // calc the speed error #endif // limit the rate output = constrain(g.pid_throttle.get_pid(z_rate_error, .02), -80, 120); // output control: return output + i_hold; //+ boost_p; } // Keeps old data out of our calculation / logs static void reset_nav_params(void) { nav_throttle = 0; // always start Circle mode at same angle circle_angle = 0; // We must be heading to a new WP, so XTrack must be 0 crosstrack_error = 0; // Will be set by new command target_bearing = 0; // Will be set by new command wp_distance = 0; // Will be set by new command, used by loiter long_error = 0; lat_error = 0; // Will be set by new command, used by loiter next_WP.alt = 0; // We want to by default pass WPs slow_wp = false; } /* reset all I integrators */ static void reset_I_all(void) { reset_rate_I(); reset_stability_I(); reset_wind_I(); reset_throttle_I(); reset_optflow_I(); // This is the only place we reset Yaw g.pi_stabilize_yaw.reset_I(); } static void reset_rate_I() { g.pid_rate_roll.reset_I(); g.pid_rate_pitch.reset_I(); g.pid_rate_yaw.reset_I(); } static void reset_optflow_I(void) { g.pid_optflow_roll.reset_I(); g.pid_optflow_pitch.reset_I(); of_roll = 0; of_pitch = 0; } static void reset_wind_I(void) { // Wind Compensation // this i is not currently being used, but we reset it anyway // because someone may modify it and not realize it, causing a bug g.pi_loiter_lat.reset_I(); g.pi_loiter_lon.reset_I(); g.pid_loiter_rate_lat.reset_I(); g.pid_loiter_rate_lon.reset_I(); g.pid_nav_lat.reset_I(); g.pid_nav_lon.reset_I(); } static void reset_throttle_I(void) { // For Altitude Hold g.pi_alt_hold.reset_I(); g.pid_throttle.reset_I(); } static void reset_stability_I(void) { // Used to balance a quad // This only needs to be reset during Auto-leveling in flight g.pi_stabilize_roll.reset_I(); g.pi_stabilize_pitch.reset_I(); } /************************************************************* throttle control ****************************************************************/ static long get_nav_yaw_offset(int yaw_input, int reset) { int32_t _yaw; if(reset == 0){ // we are on the ground return ahrs.yaw_sensor; }else{ // re-define nav_yaw if we have stick input if(yaw_input != 0){ // set nav_yaw + or - the current location _yaw = yaw_input + ahrs.yaw_sensor; // we need to wrap our value so we can be 0 to 360 (*100) return wrap_360(_yaw); }else{ // no stick input, lets not change nav_yaw return nav_yaw; } } } static int16_t get_angle_boost(int16_t value) { float temp = cos_pitch_x * cos_roll_x; temp = constrain(temp, .5, 1.0); return ((float)(g.throttle_cruise + 80) / temp) - (g.throttle_cruise + 80); } #if FRAME_CONFIG == HELI_FRAME // heli_angle_boost - adds a boost depending on roll/pitch values // equivalent of quad's angle_boost function // throttle value should be 0 ~ 1000 static int16_t heli_get_angle_boost(int16_t throttle) { float angle_boost_factor = cos_pitch_x * cos_roll_x; angle_boost_factor = 1.0 - constrain(angle_boost_factor, .5, 1.0); int throttle_above_mid = max(throttle - motors.throttle_mid,0); return throttle + throttle_above_mid*angle_boost_factor; } #endif // HELI_FRAME #define NUM_G_SAMPLES 40 #if ACCEL_ALT_HOLD == 2 // z -14.4306 = going up // z -6.4306 = going down static int get_z_damping() { int output; Z_integrator += get_world_Z_accel() - Z_offset; output = Z_integrator * 3; Z_integrator = Z_integrator * .8; output = constrain(output, -100, 100); return output; } float get_world_Z_accel() { accels_rot = ahrs.get_dcm_matrix() * imu.get_accel(); //Serial.printf("z %1.4f\n", accels_rot.z); return accels_rot.z; } static void init_z_damper() { Z_offset = 0; for (int i = 0; i < NUM_G_SAMPLES; i++){ delay(5); read_AHRS(); Z_offset += get_world_Z_accel(); } Z_offset /= (float)NUM_G_SAMPLES; } // Accelerometer Z dampening by Aurelio R. Ramos // --------------------------------------------- #elif ACCEL_ALT_HOLD == 1 // contains G and any other DC offset static float estimatedAccelOffset = 0; // state static float synVelo = 0; static float synPos = 0; static float synPosFiltered = 0; static float posError = 0; static float prevSensedPos = 0; // tuning for dead reckoning static const float dt_50hz = 0.02; static float synPosP = 10 * dt_50hz; static float synPosI = 15 * dt_50hz; static float synVeloP = 1.5 * dt_50hz; static float maxVeloCorrection = 5 * dt_50hz; static float maxSensedVelo = 1; static float synPosFilter = 0.5; // Z damping term. static float fullDampP = 0.100; float get_world_Z_accel() { accels_rot = ahrs.get_dcm_matrix() * imu.get_accel(); return accels_rot.z; } static void init_z_damper() { estimatedAccelOffset = 0; for (int i = 0; i < NUM_G_SAMPLES; i++){ delay(5); read_AHRS(); estimatedAccelOffset += get_world_Z_accel(); } estimatedAccelOffset /= (float)NUM_G_SAMPLES; } float dead_reckon_Z(float sensedPos, float sensedAccel) { // the following algorithm synthesizes position and velocity from // a noisy altitude and accelerometer data. // synthesize uncorrected velocity by integrating acceleration synVelo += (sensedAccel - estimatedAccelOffset) * dt_50hz; // synthesize uncorrected position by integrating uncorrected velocity synPos += synVelo * dt_50hz; // filter synPos, the better this filter matches the filtering and dead time // of the sensed position, the less the position estimate will lag. synPosFiltered = synPosFiltered * (1 - synPosFilter) + synPos * synPosFilter; // calculate error against sensor position posError = sensedPos - synPosFiltered; // correct altitude synPos += synPosP * posError; // correct integrated velocity by posError synVelo = synVelo + constrain(posError, -maxVeloCorrection, maxVeloCorrection) * synPosI; // correct integrated velocity by the sensed position delta in a small proportion // (i.e., the low frequency of the delta) float sensedVelo = (sensedPos - prevSensedPos) / dt_50hz; synVelo += constrain(sensedVelo - synVelo, -maxSensedVelo, maxSensedVelo) * synVeloP; prevSensedPos = sensedPos; return synVelo; } static int get_z_damping() { float sensedAccel = get_world_Z_accel(); float sensedPos = current_loc.alt / 100.0; float synVelo = dead_reckon_Z(sensedPos, sensedAccel); return constrain(fullDampP * synVelo * (-1), -300, 300); } #else static int get_z_damping() { return 0; } static void init_z_damper() { } #endif // calculate modified roll/pitch depending upon optical flow calculated position static int32_t get_of_roll(int32_t control_roll) { #ifdef OPTFLOW_ENABLED static float tot_x_cm = 0; // total distance from target static uint32_t last_of_roll_update = 0; int32_t new_roll = 0; int32_t p,i,d; // check if new optflow data available if( optflow.last_update != last_of_roll_update) { last_of_roll_update = optflow.last_update; // add new distance moved tot_x_cm += optflow.x_cm; // only stop roll if caller isn't modifying roll if( control_roll == 0 && current_loc.alt < 1500) { p = g.pid_optflow_roll.get_p(-tot_x_cm); i = g.pid_optflow_roll.get_i(-tot_x_cm,1.0); // we could use the last update time to calculate the time change d = g.pid_optflow_roll.get_d(-tot_x_cm,1.0); new_roll = p+i+d; }else{ g.pid_optflow_roll.reset_I(); tot_x_cm = 0; p = 0; // for logging i = 0; d = 0; } // limit amount of change and maximum angle of_roll = constrain(new_roll, (of_roll-20), (of_roll+20)); #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) { log_counter++; if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_OPTFLOW_KP, tot_x_cm, p, i, d, of_roll, tuning_value); } } #endif // LOGGING_ENABLED == ENABLED } // limit max angle of_roll = constrain(of_roll, -1000, 1000); return control_roll+of_roll; #else return control_roll; #endif } static int32_t get_of_pitch(int32_t control_pitch) { #ifdef OPTFLOW_ENABLED static float tot_y_cm = 0; // total distance from target static uint32_t last_of_pitch_update = 0; int32_t new_pitch = 0; int32_t p,i,d; // check if new optflow data available if( optflow.last_update != last_of_pitch_update ) { last_of_pitch_update = optflow.last_update; // add new distance moved tot_y_cm += optflow.y_cm; // only stop roll if caller isn't modifying pitch if( control_pitch == 0 && current_loc.alt < 1500 ) { p = g.pid_optflow_pitch.get_p(tot_y_cm); i = g.pid_optflow_pitch.get_i(tot_y_cm, 1.0); // we could use the last update time to calculate the time change d = g.pid_optflow_pitch.get_d(tot_y_cm, 1.0); new_pitch = p + i + d; }else{ tot_y_cm = 0; g.pid_optflow_pitch.reset_I(); p = 0; // for logging i = 0; d = 0; } // limit amount of change of_pitch = constrain(new_pitch, (of_pitch-20), (of_pitch+20)); #if LOGGING_ENABLED == ENABLED static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash // log output if PID logging is on and we are tuning the rate P, I or D gains if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) { log_counter++; if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 log_counter = 0; Log_Write_PID(CH6_OPTFLOW_KP+100, tot_y_cm, p, i, d, of_pitch, tuning_value); } } #endif // LOGGING_ENABLED == ENABLED } // limit max angle of_pitch = constrain(of_pitch, -1000, 1000); return control_pitch+of_pitch; #else return control_pitch; #endif } // THOR // The function call for managing the flight mode Toy void roll_pitch_toy() { bool manual_control = false; if(g.rc_2.control_in != 0){ // If we pitch forward or back, resume manually control manual_control = true; } // Yaw control - Yaw is always available, and will NOT exit the // user from Loiter mode int16_t yaw_rate = g.rc_1.control_in / g.toy_yaw_rate; //nav_yaw += yaw_rate / 100; //nav_yaw = wrap_360(nav_yaw); //g.rc_4.servo_out = get_stabilize_yaw(nav_yaw); if(g.rc_1.control_in != 0){ // roll g.rc_4.servo_out = get_acro_yaw(yaw_rate); yaw_stopped = false; yaw_timer = 150; }else if (!yaw_stopped){ g.rc_4.servo_out = get_acro_yaw(0); yaw_timer--; if(yaw_timer == 0){ yaw_stopped = true; nav_yaw = ahrs.yaw_sensor; } }else{ g.rc_4.servo_out = get_stabilize_yaw(nav_yaw); } if(manual_control){ // user is in control: reset count-up timer toy_input_timer = 0; // roll_rate is the outcome of the linear equation or lookup table // based on speed and Yaw rate int16_t roll_rate = 0; // We manually set out modes based on the state of Toy mode: // Handle throttle manually throttle_mode = THROTTLE_MANUAL; // Dont try to navigate or integrate a nav error wp_control = NO_NAV_MODE; #if TOY_LOOKUP == 1 uint8_t xx, yy; // Lookup value xx = g_gps->ground_speed / 200; yy = abs(yaw_rate / 500); // constrain to lookup Array range xx = constrain(xx, 0, 3); yy = constrain(yy, 0, 8); roll_rate = toy_lookup[yy * 4 + xx]; if(yaw_rate == 0) roll_rate = 0; else if(yaw_rate < 0) roll_rate = -roll_rate; int16_t roll_limit = 4500 / g.toy_yaw_rate; roll_rate = constrain(roll_rate, -roll_limit, roll_limit); #else // yaw_rate = roll angle // Linear equation for Yaw:Speed to Roll // default is 1000, lower for more roll action //roll_rate = ((float)g_gps->ground_speed / 600) * (float)yaw_rate; roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40; //Serial.printf("roll_rate: %d\n",roll_rate); // limit roll rate to 15, 30, or 45 deg per second. //int16_t roll_limit = 4500 / g.toy_yaw_rate; //roll_rate = constrain(roll_rate, -roll_limit, roll_limit); roll_rate = constrain(roll_rate, -2500, 2500); //Serial.printf("yaw_rate %d, roll_rate %d, lim %d\n",yaw_rate, roll_rate, roll_limit); #endif // Output the attitude g.rc_1.servo_out = get_stabilize_roll(roll_rate); g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in); }else{ //no user input // Count-up to decision tp Loiter toy_input_timer++; //if (toy_input_timer == TOY_DELAY){ if((wp_control != LOITER_MODE) && ((g_gps->ground_speed < 150) || (toy_input_timer == TOY_DELAY))){ // clear our I terms for Nav or we will carry over old values reset_wind_I(); // loiter wp_control = LOITER_MODE; // we are in an alt hold throttle with manual override throttle_mode = THROTTLE_HOLD; set_next_WP(¤t_loc); } if (wp_control == LOITER_MODE){ // prevent timer overflow toy_input_timer = TOY_DELAY; // outputs the needed nav_control to maintain speed and direction g.rc_1.servo_out = get_stabilize_roll(auto_roll); g.rc_2.servo_out = get_stabilize_pitch(auto_pitch); }else{ // Coast g.rc_1.servo_out = get_stabilize_roll(0); g.rc_2.servo_out = get_stabilize_pitch(0); } } }