/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Motors6DOF.cpp - ArduSub motors library */ #include #include "AP_Motors6DOF.h" extern const AP_HAL::HAL& hal; // parameters for the motor class const AP_Param::GroupInfo AP_Motors6DOF::var_info[] = { AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0), // @Param: 1_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("1_DIRECTION", 1, AP_Motors6DOF, _motor_reverse[0], 1), // @Param: 2_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("2_DIRECTION", 2, AP_Motors6DOF, _motor_reverse[1], 1), // @Param: 3_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("3_DIRECTION", 3, AP_Motors6DOF, _motor_reverse[2], 1), // @Param: 4_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("4_DIRECTION", 4, AP_Motors6DOF, _motor_reverse[3], 1), // @Param: 5_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("5_DIRECTION", 5, AP_Motors6DOF, _motor_reverse[4], 1), // @Param: 6_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("6_DIRECTION", 6, AP_Motors6DOF, _motor_reverse[5], 1), // @Param: 7_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("7_DIRECTION", 7, AP_Motors6DOF, _motor_reverse[6], 1), // @Param: 8_DIRECTION // @DisplayName: Motor normal or reverse // @Description: Used to change motor rotation directions without changing wires // @Values: 1:normal,-1:reverse // @User: Standard AP_GROUPINFO("8_DIRECTION", 8, AP_Motors6DOF, _motor_reverse[7], 1), // @Param: FV_CPLNG_K // @DisplayName: Forward/vertical to pitch decoupling factor // @Description: Used to decouple pitch from forward/vertical motion. 0 to disable, 1.2 normal // @Range: 0.0 1.5 // @Increment: 0.1 // @User: Standard AP_GROUPINFO("FV_CPLNG_K", 9, AP_Motors6DOF, _forwardVerticalCouplingFactor, 1.0), AP_GROUPEND }; void AP_Motors6DOF::setup_motors(motor_frame_class frame_class, motor_frame_type frame_type) { // remove existing motors for (int8_t i=0; icork(); for (i=0; ipush(); } int16_t AP_Motors6DOF::calc_thrust_to_pwm(float thrust_in) const { return constrain_int16(1500 + thrust_in * 400, _throttle_radio_min, _throttle_radio_max); } void AP_Motors6DOF::output_to_motors() { int8_t i; int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final pwm values sent to the motor switch (_spool_mode) { case SHUT_DOWN: // sends minimum values out to the motors // set motor output based on thrust requests for (i=0; icork(); for (i=0; ipush(); } // output_armed - sends commands to the motors // includes new scaling stability patch // TODO pull code that is common to output_armed_not_stabilizing into helper functions // ToDo calculate headroom for rpy to be added for stabilization during full throttle/forward/lateral commands void AP_Motors6DOF::output_armed_stabilizing() { if ((sub_frame_t)_last_frame_class == SUB_FRAME_VECTORED) { output_armed_stabilizing_vectored(); } else if ((sub_frame_t)_last_frame_class == SUB_FRAME_VECTORED_6DOF) { output_armed_stabilizing_vectored_6dof(); } else { uint8_t i; // general purpose counter float roll_thrust; // roll thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0 float throttle_thrust; // throttle thrust input value, +/- 1.0 float forward_thrust; // forward thrust input value, +/- 1.0 float lateral_thrust; // lateral thrust input value, +/- 1.0 roll_thrust = _roll_in; pitch_thrust = _pitch_in; yaw_thrust = _yaw_in; throttle_thrust = get_throttle_bidirectional(); forward_thrust = _forward_in; lateral_thrust = _lateral_in; float rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times. float linear_out[AP_MOTORS_MAX_NUM_MOTORS]; // 3 linear DOF mix for each motor // initialize limits flags limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // sanity check throttle is above zero and below current limited throttle if (throttle_thrust <= -_throttle_thrust_max) { throttle_thrust = -_throttle_thrust_max; limit.throttle_lower = true; } if (throttle_thrust >= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } // calculate roll, pitch and yaw for each motor for (i=0; i= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } // calculate roll, pitch and yaw for each motor for (i=0; i= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } // calculate roll, pitch and Throttle for each motor (only used by vertical thrusters) rpt_max = 1; //Initialized to 1 so that normalization will only occur if value is saturated for (i=0; i rpt_max) { rpt_max = fabs(rpt_out[i]); } } } // calculate linear/yaw command for each motor (only used for translational thrusters) // linear factors should be 0.0 or 1.0 for now yfl_max = 1; //Initialized to 1 so that normalization will only occur if value is saturated for (i=0; i yfl_max) { yfl_max = fabs(yfl_out[i]); } } } // Calculate final output for each motor and normalize if necessary for (i=0; i