#include // Constructor template AP_Curve::AP_Curve() : _num_points(0) { // clear the curve clear(); }; // clear the curve template void AP_Curve::clear() { // clear the curve for( uint8_t i=0; i bool AP_Curve::add_point( T x, T y ) { if( _num_points < SIZE ) { _x[_num_points] = x; _y[_num_points] = y; // increment the number of points _num_points++; // if we have at least two points calculate the slope if( _num_points > 1 ) { _slope[_num_points-2] = (float)(_y[_num_points-1] - _y[_num_points-2]) / (float)(_x[_num_points-1] - _x[_num_points-2]); _slope[_num_points-1] = _slope[_num_points-2]; // the final slope is for interpolation beyond the end of the curve } return true; }else{ // we do not have room for the new point return false; } } // get_y - returns the y value on the curve for a given x value template T AP_Curve::get_y( T x ) { uint8_t i; T result; // deal with case where ther is no curve if( _num_points == 0 ) { return x; } // when x value is lower than the first point's x value, return minimum y value if( x <= _x[0] ) { return _y[0]; } // when x value is higher than the last point's x value, return maximum y value if( x >= _x[_num_points-1] ) { return _y[_num_points-1]; } // deal with the normal case for( i=0; i<_num_points-1; i++ ) { if( x >= _x[i] && x <= _x[i+1] ) { result = _y[i] + (x - _x[i]) * _slope[i]; return result; } } // we should never get here return x; } // displays the contents of the curve (for debugging) template void AP_Curve::dump_curve(AP_HAL::BetterStream* s) { s->println_P(PSTR("Curve:")); for( uint8_t i = 0; i<_num_points; i++ ){ s->print_P(PSTR("x:")); s->print(_x[i]); s->print_P(PSTR("\ty:")); s->print(_y[i]); s->print_P(PSTR("\tslope:")); s->print(_slope[i],4); s->println(); } } template class AP_Curve; template class AP_Curve; template class AP_Curve; template class AP_Curve; template class AP_Curve; template class AP_Curve;