// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // default sensors are present and healthy: gyro, accelerometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control #define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS | MAV_SYS_STATUS_AHRS) // use this to prevent recursion during sensor init static bool in_mavlink_delay; // true if we are out of time in our event timeslice static bool gcs_out_of_time; // check if a message will fit in the payload space available #define CHECK_PAYLOAD_SIZE(id) if (txspace < MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_## id ##_LEN) return false /* * !!NOTE!! * * the use of NOINLINE separate functions for each message type avoids * a compiler bug in gcc that would cause it to use far more stack * space than is needed. Without the NOINLINE we use the sum of the * stack needed for each message type. Please be careful to follow the * pattern below when adding any new messages */ static NOINLINE void send_heartbeat(mavlink_channel_t chan) { uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; uint8_t system_status = MAV_STATE_ACTIVE; uint32_t custom_mode = control_mode; if (failsafe.triggered != 0) { system_status = MAV_STATE_CRITICAL; } // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation switch (control_mode) { case MANUAL: case LEARNING: case STEERING: base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; break; case AUTO: case RTL: case GUIDED: base_mode = MAV_MODE_FLAG_GUIDED_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; case INITIALISING: system_status = MAV_STATE_CALIBRATING; break; case HOLD: system_status = 0; break; } #if ENABLE_STICK_MIXING==ENABLED if (control_mode != INITIALISING) { // all modes except INITIALISING have some form of manual // override if stick mixing is enabled base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } #endif #if HIL_MODE != HIL_MODE_DISABLED base_mode |= MAV_MODE_FLAG_HIL_ENABLED; #endif // we are armed if we are not initialising if (control_mode != INITIALISING && ahrs.get_armed()) { base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; mavlink_msg_heartbeat_send( chan, MAV_TYPE_GROUND_ROVER, MAV_AUTOPILOT_ARDUPILOTMEGA, base_mode, custom_mode, system_status); } static NOINLINE void send_attitude(mavlink_channel_t chan) { Vector3f omega = ahrs.get_gyro(); mavlink_msg_attitude_send( chan, millis(), ahrs.roll, ahrs.pitch, ahrs.yaw, omega.x, omega.y, omega.z); } static NOINLINE void send_extended_status1(mavlink_channel_t chan) { uint32_t control_sensors_present; uint32_t control_sensors_enabled; uint32_t control_sensors_health; // default sensors present control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; // first what sensors/controllers we have if (g.compass_enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present } if (gps.status() > AP_GPS::NO_GPS) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; } // all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control and motor output which we will set individually control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS); switch (control_mode) { case MANUAL: case HOLD: break; case LEARNING: case STEERING: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation break; case AUTO: case RTL: case GUIDED: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control break; case INITIALISING: break; } // set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED) if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; } // default to all healthy except compass and gps which we set individually control_sensors_health = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_3D_MAG & ~MAV_SYS_STATUS_SENSOR_GPS); if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG; } if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS; } if (!ins.get_gyro_health_all() || (!g.skip_gyro_cal && !ins.gyro_calibrated_ok_all())) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO; } if (!ins.get_accel_health_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL; } if (ahrs.initialised() && !ahrs.healthy()) { // AHRS subsystem is unhealthy control_sensors_health &= ~MAV_SYS_STATUS_AHRS; } int16_t battery_current = -1; int8_t battery_remaining = -1; if (battery.has_current()) { battery_remaining = battery.capacity_remaining_pct(); battery_current = battery.current_amps() * 100; } mavlink_msg_sys_status_send( chan, control_sensors_present, control_sensors_enabled, control_sensors_health, (uint16_t)(scheduler.load_average(20000) * 1000), battery.voltage() * 1000, // mV battery_current, // in 10mA units battery_remaining, // in % 0, // comm drops %, 0, // comm drops in pkts, 0, 0, 0, 0); } static void NOINLINE send_location(mavlink_channel_t chan) { uint32_t fix_time; // if we have a GPS fix, take the time as the last fix time. That // allows us to correctly calculate velocities and extrapolate // positions. // If we don't have a GPS fix then we are dead reckoning, and will // use the current boot time as the fix time. if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) { fix_time = gps.last_fix_time_ms(); } else { fix_time = millis(); } const Vector3f &vel = gps.velocity(); mavlink_msg_global_position_int_send( chan, fix_time, current_loc.lat, // in 1E7 degrees current_loc.lng, // in 1E7 degrees gps.location().alt * 10UL, // millimeters above sea level (current_loc.alt - home.alt) * 10, // millimeters above ground vel.x * 100, // X speed cm/s (+ve North) vel.y * 100, // Y speed cm/s (+ve East) vel.z * -100, // Z speed cm/s (+ve up) ahrs.yaw_sensor); } static void NOINLINE send_nav_controller_output(mavlink_channel_t chan) { mavlink_msg_nav_controller_output_send( chan, lateral_acceleration, // use nav_roll to hold demanded Y accel gps.ground_speed() * ins.get_gyro().z, // use nav_pitch to hold actual Y accel nav_controller->nav_bearing_cd() * 0.01f, nav_controller->target_bearing_cd() * 0.01f, wp_distance, 0, groundspeed_error, nav_controller->crosstrack_error()); } #if HIL_MODE != HIL_MODE_DISABLED static void NOINLINE send_servo_out(mavlink_channel_t chan) { // normalized values scaled to -10000 to 10000 // This is used for HIL. Do not change without discussing with // HIL maintainers mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 10000 * channel_steer->norm_output(), 0, 10000 * channel_throttle->norm_output(), 0, 0, 0, 0, 0, receiver_rssi); } #endif static void NOINLINE send_radio_out(mavlink_channel_t chan) { #if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS mavlink_msg_servo_output_raw_send( chan, micros(), 0, // port hal.rcout->read(0), hal.rcout->read(1), hal.rcout->read(2), hal.rcout->read(3), hal.rcout->read(4), hal.rcout->read(5), hal.rcout->read(6), hal.rcout->read(7)); #else mavlink_msg_servo_output_raw_send( chan, micros(), 0, // port RC_Channel::rc_channel(0)->radio_out, RC_Channel::rc_channel(1)->radio_out, RC_Channel::rc_channel(2)->radio_out, RC_Channel::rc_channel(3)->radio_out, RC_Channel::rc_channel(4)->radio_out, RC_Channel::rc_channel(5)->radio_out, RC_Channel::rc_channel(6)->radio_out, RC_Channel::rc_channel(7)->radio_out); #endif } static void NOINLINE send_vfr_hud(mavlink_channel_t chan) { mavlink_msg_vfr_hud_send( chan, gps.ground_speed(), gps.ground_speed(), (ahrs.yaw_sensor / 100) % 360, (uint16_t)(100 * fabsf(channel_throttle->norm_output())), current_loc.alt / 100.0, 0); } // report simulator state static void NOINLINE send_simstate(mavlink_channel_t chan) { #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL sitl.simstate_send(chan); #endif } static void NOINLINE send_hwstatus(mavlink_channel_t chan) { mavlink_msg_hwstatus_send( chan, hal.analogin->board_voltage()*1000, hal.i2c->lockup_count()); } static void NOINLINE send_rangefinder(mavlink_channel_t chan) { if (!sonar.healthy()) { // no sonar to report return; } /* report smaller distance of two sonars if more than one enabled */ float distance_cm, voltage; if (!sonar.healthy(1)) { distance_cm = sonar.distance_cm(0); voltage = sonar.voltage_mv(0) * 0.001f; } else { float dist1 = sonar.distance_cm(0); float dist2 = sonar.distance_cm(1); if (dist1 <= dist2) { distance_cm = dist1; voltage = sonar.voltage_mv(0) * 0.001f; } else { distance_cm = dist2; voltage = sonar.voltage_mv(1) * 0.001f; } } mavlink_msg_rangefinder_send( chan, distance_cm * 0.01f, voltage); } static void NOINLINE send_current_waypoint(mavlink_channel_t chan) { mavlink_msg_mission_current_send(chan, mission.get_current_nav_index()); } static void NOINLINE send_statustext(mavlink_channel_t chan) { mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status; mavlink_msg_statustext_send( chan, s->severity, s->text); } // are we still delaying telemetry to try to avoid Xbee bricking? static bool telemetry_delayed(mavlink_channel_t chan) { uint32_t tnow = millis() >> 10; if (tnow > (uint32_t)g.telem_delay) { return false; } if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) { // this is USB telemetry, so won't be an Xbee return false; } // we're either on the 2nd UART, or no USB cable is connected // we need to delay telemetry by the TELEM_DELAY time return true; } // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK::try_send_message(enum ap_message id) { uint16_t txspace = comm_get_txspace(chan); if (telemetry_delayed(chan)) { return false; } // if we don't have at least 1ms remaining before the main loop // wants to fire then don't send a mavlink message. We want to // prioritise the main flight control loop over communications if (!in_mavlink_delay && scheduler.time_available_usec() < 1200) { gcs_out_of_time = true; return false; } switch (id) { case MSG_HEARTBEAT: CHECK_PAYLOAD_SIZE(HEARTBEAT); gcs[chan-MAVLINK_COMM_0].last_heartbeat_time = hal.scheduler->millis(); send_heartbeat(chan); return true; case MSG_EXTENDED_STATUS1: CHECK_PAYLOAD_SIZE(SYS_STATUS); send_extended_status1(chan); CHECK_PAYLOAD_SIZE(POWER_STATUS); gcs[chan-MAVLINK_COMM_0].send_power_status(); break; case MSG_EXTENDED_STATUS2: CHECK_PAYLOAD_SIZE(MEMINFO); gcs[chan-MAVLINK_COMM_0].send_meminfo(); break; case MSG_ATTITUDE: CHECK_PAYLOAD_SIZE(ATTITUDE); send_attitude(chan); break; case MSG_LOCATION: CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT); send_location(chan); break; case MSG_NAV_CONTROLLER_OUTPUT: if (control_mode != MANUAL) { CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); send_nav_controller_output(chan); } break; case MSG_GPS_RAW: CHECK_PAYLOAD_SIZE(GPS_RAW_INT); gcs[chan-MAVLINK_COMM_0].send_gps_raw(gps); break; case MSG_SYSTEM_TIME: CHECK_PAYLOAD_SIZE(SYSTEM_TIME); gcs[chan-MAVLINK_COMM_0].send_system_time(gps); break; case MSG_SERVO_OUT: #if HIL_MODE != HIL_MODE_DISABLED CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); send_servo_out(chan); #endif break; case MSG_RADIO_IN: CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW); gcs[chan-MAVLINK_COMM_0].send_radio_in(receiver_rssi); break; case MSG_RADIO_OUT: CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW); send_radio_out(chan); break; case MSG_VFR_HUD: CHECK_PAYLOAD_SIZE(VFR_HUD); send_vfr_hud(chan); break; case MSG_RAW_IMU1: CHECK_PAYLOAD_SIZE(RAW_IMU); gcs[chan-MAVLINK_COMM_0].send_raw_imu(ins, compass); break; case MSG_RAW_IMU3: CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS); gcs[chan-MAVLINK_COMM_0].send_sensor_offsets(ins, compass, barometer); break; case MSG_CURRENT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_CURRENT); send_current_waypoint(chan); break; case MSG_NEXT_PARAM: CHECK_PAYLOAD_SIZE(PARAM_VALUE); gcs[chan-MAVLINK_COMM_0].queued_param_send(); break; case MSG_NEXT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_REQUEST); gcs[chan-MAVLINK_COMM_0].queued_waypoint_send(); break; case MSG_STATUSTEXT: CHECK_PAYLOAD_SIZE(STATUSTEXT); send_statustext(chan); break; case MSG_AHRS: CHECK_PAYLOAD_SIZE(AHRS); gcs[chan-MAVLINK_COMM_0].send_ahrs(ahrs); break; case MSG_SIMSTATE: CHECK_PAYLOAD_SIZE(SIMSTATE); send_simstate(chan); break; case MSG_HWSTATUS: CHECK_PAYLOAD_SIZE(HWSTATUS); send_hwstatus(chan); break; case MSG_RANGEFINDER: CHECK_PAYLOAD_SIZE(RANGEFINDER); send_rangefinder(chan); break; case MSG_MOUNT_STATUS: #if MOUNT == ENABLED CHECK_PAYLOAD_SIZE(MOUNT_STATUS); camera_mount.status_msg(chan); #endif // MOUNT == ENABLED break; case MSG_RAW_IMU2: case MSG_LIMITS_STATUS: case MSG_FENCE_STATUS: case MSG_WIND: // unused break; case MSG_BATTERY2: CHECK_PAYLOAD_SIZE(BATTERY2); gcs[chan-MAVLINK_COMM_0].send_battery2(battery); break; case MSG_CAMERA_FEEDBACK: #if CAMERA == ENABLED CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK); camera.send_feedback(chan, gps, ahrs, current_loc); #endif break; case MSG_RETRY_DEFERRED: case MSG_TERRAIN: case MSG_OPTICAL_FLOW: break; // just here to prevent a warning } return true; } /* default stream rates to 1Hz */ const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Raw sensor stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Extended status stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: RC Channel stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Raw Control stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Position stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Extra data type 1 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Extra data type 2 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Extra data type 3 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Parameter stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10), AP_GROUPEND }; // see if we should send a stream now. Called at 50Hz bool GCS_MAVLINK::stream_trigger(enum streams stream_num) { if (stream_num >= NUM_STREAMS) { return false; } float rate = (uint8_t)streamRates[stream_num].get(); // send at a much lower rate while handling waypoints and // parameter sends if ((stream_num != STREAM_PARAMS) && (waypoint_receiving || _queued_parameter != NULL)) { rate *= 0.25; } if (rate <= 0) { return false; } if (stream_ticks[stream_num] == 0) { // we're triggering now, setup the next trigger point if (rate > 50) { rate = 50; } stream_ticks[stream_num] = (50 / rate) + stream_slowdown; return true; } // count down at 50Hz stream_ticks[stream_num]--; return false; } void GCS_MAVLINK::data_stream_send(void) { gcs_out_of_time = false; if (!in_mavlink_delay) { handle_log_send(DataFlash); } if (_queued_parameter != NULL) { if (streamRates[STREAM_PARAMS].get() <= 0) { streamRates[STREAM_PARAMS].set(10); } if (stream_trigger(STREAM_PARAMS)) { send_message(MSG_NEXT_PARAM); } } if (gcs_out_of_time) return; if (in_mavlink_delay) { #if HIL_MODE != HIL_MODE_DISABLED // in HIL we need to keep sending servo values to ensure // the simulator doesn't pause, otherwise our sensor // calibration could stall if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); } if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_RADIO_OUT); } #endif // don't send any other stream types while in the delay callback return; } if (gcs_out_of_time) return; if (stream_trigger(STREAM_RAW_SENSORS)) { send_message(MSG_RAW_IMU1); send_message(MSG_RAW_IMU3); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTENDED_STATUS)) { send_message(MSG_EXTENDED_STATUS1); send_message(MSG_EXTENDED_STATUS2); send_message(MSG_CURRENT_WAYPOINT); send_message(MSG_GPS_RAW); // TODO - remove this message after location message is working send_message(MSG_NAV_CONTROLLER_OUTPUT); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_POSITION)) { // sent with GPS read send_message(MSG_LOCATION); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_RADIO_OUT); send_message(MSG_RADIO_IN); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA1)) { send_message(MSG_ATTITUDE); send_message(MSG_SIMSTATE); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA2)) { send_message(MSG_VFR_HUD); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA3)) { send_message(MSG_AHRS); send_message(MSG_HWSTATUS); send_message(MSG_RANGEFINDER); send_message(MSG_SYSTEM_TIME); send_message(MSG_BATTERY2); send_message(MSG_MOUNT_STATUS); } } void GCS_MAVLINK::handle_guided_request(AP_Mission::Mission_Command &cmd) { guided_WP = cmd.content.location; set_mode(GUIDED); // make any new wp uploaded instant (in case we are already in Guided mode) set_guided_WP(); } void GCS_MAVLINK::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { // nothing to do } void GCS_MAVLINK::handleMessage(mavlink_message_t* msg) { switch (msg->msgid) { case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: { handle_request_data_stream(msg, true); break; } case MAVLINK_MSG_ID_COMMAND_LONG: { // decode mavlink_command_long_t packet; mavlink_msg_command_long_decode(msg, &packet); uint8_t result = MAV_RESULT_UNSUPPORTED; // do command send_text_P(SEVERITY_LOW,PSTR("command received: ")); switch(packet.command) { case MAV_CMD_NAV_RETURN_TO_LAUNCH: set_mode(RTL); result = MAV_RESULT_ACCEPTED; break; #if MOUNT == ENABLED // Sets the region of interest (ROI) for the camera case MAV_CMD_DO_SET_ROI: Location roi_loc; roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f); roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f); roi_loc.alt = (int32_t)(packet.param7 * 100.0f); if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) { // switch off the camera tracking if enabled if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { camera_mount.set_mode_to_default(); } } else { // send the command to the camera mount camera_mount.set_roi_cmd(&roi_loc); } result = MAV_RESULT_ACCEPTED; break; #endif case MAV_CMD_MISSION_START: set_mode(AUTO); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_PREFLIGHT_CALIBRATION: if ((packet.param1 == 1 || packet.param2 == 1) && packet.param3 == 0) { startup_INS_ground(true); result = MAV_RESULT_ACCEPTED; } else if (packet.param4 == 1) { trim_radio(); result = MAV_RESULT_ACCEPTED; } else { send_text_P(SEVERITY_LOW, PSTR("Unsupported preflight calibration")); } break; case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS: if (packet.param1 == 2) { // save first compass's offsets compass.set_and_save_offsets(0, packet.param2, packet.param3, packet.param4); result = MAV_RESULT_ACCEPTED; } if (packet.param1 == 5) { // save secondary compass's offsets compass.set_and_save_offsets(1, packet.param2, packet.param3, packet.param4); result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_SET_MODE: switch ((uint16_t)packet.param1) { case MAV_MODE_MANUAL_ARMED: case MAV_MODE_MANUAL_DISARMED: set_mode(MANUAL); result = MAV_RESULT_ACCEPTED; break; case MAV_MODE_AUTO_ARMED: case MAV_MODE_AUTO_DISARMED: set_mode(AUTO); result = MAV_RESULT_ACCEPTED; break; case MAV_MODE_STABILIZE_DISARMED: case MAV_MODE_STABILIZE_ARMED: set_mode(LEARNING); result = MAV_RESULT_ACCEPTED; break; default: result = MAV_RESULT_UNSUPPORTED; } break; case MAV_CMD_DO_SET_SERVO: if (ServoRelayEvents.do_set_servo(packet.param1, packet.param2)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_REPEAT_SERVO: if (ServoRelayEvents.do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4*1000)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_SET_RELAY: if (ServoRelayEvents.do_set_relay(packet.param1, packet.param2)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_REPEAT_RELAY: if (ServoRelayEvents.do_repeat_relay(packet.param1, packet.param2, packet.param3*1000)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: if (packet.param1 == 1 || packet.param1 == 3) { // when packet.param1 == 3 we reboot to hold in bootloader hal.scheduler->reboot(packet.param1 == 3); result = MAV_RESULT_ACCEPTED; } break; default: break; } mavlink_msg_command_ack_send_buf( msg, chan, packet.command, result); break; } case MAVLINK_MSG_ID_SET_MODE: { handle_set_mode(msg, mavlink_set_mode); break; } case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: { handle_mission_request_list(mission, msg); break; } // XXX read a WP from EEPROM and send it to the GCS case MAVLINK_MSG_ID_MISSION_REQUEST: { handle_mission_request(mission, msg); break; } case MAVLINK_MSG_ID_MISSION_ACK: { // not used break; } case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: { // mark the firmware version in the tlog send_text_P(SEVERITY_LOW, PSTR(FIRMWARE_STRING)); #if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION) send_text_P(SEVERITY_LOW, PSTR("PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION)); #endif handle_param_request_list(msg); break; } case MAVLINK_MSG_ID_PARAM_REQUEST_READ: { handle_param_request_read(msg); break; } case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: { handle_mission_clear_all(mission, msg); break; } case MAVLINK_MSG_ID_MISSION_SET_CURRENT: { handle_mission_set_current(mission, msg); break; } case MAVLINK_MSG_ID_MISSION_COUNT: { handle_mission_count(mission, msg); break; } case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: { handle_mission_write_partial_list(mission, msg); break; } // XXX receive a WP from GCS and store in EEPROM case MAVLINK_MSG_ID_MISSION_ITEM: { handle_mission_item(msg, mission); break; } case MAVLINK_MSG_ID_PARAM_SET: { handle_param_set(msg, &DataFlash); break; } case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: { // allow override of RC channel values for HIL // or for complete GCS control of switch position // and RC PWM values. if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs mavlink_rc_channels_override_t packet; int16_t v[8]; mavlink_msg_rc_channels_override_decode(msg, &packet); v[0] = packet.chan1_raw; v[1] = packet.chan2_raw; v[2] = packet.chan3_raw; v[3] = packet.chan4_raw; v[4] = packet.chan5_raw; v[5] = packet.chan6_raw; v[6] = packet.chan7_raw; v[7] = packet.chan8_raw; hal.rcin->set_overrides(v, 8); failsafe.rc_override_timer = millis(); failsafe_trigger(FAILSAFE_EVENT_RC, false); break; } case MAVLINK_MSG_ID_HEARTBEAT: { // We keep track of the last time we received a heartbeat from our GCS for failsafe purposes if(msg->sysid != g.sysid_my_gcs) break; last_heartbeat_ms = failsafe.rc_override_timer = millis(); failsafe_trigger(FAILSAFE_EVENT_GCS, false); break; } #if HIL_MODE != HIL_MODE_DISABLED case MAVLINK_MSG_ID_HIL_STATE: { mavlink_hil_state_t packet; mavlink_msg_hil_state_decode(msg, &packet); // set gps hil sensor Location loc; loc.lat = packet.lat; loc.lng = packet.lon; loc.alt = packet.alt/10; Vector3f vel(packet.vx, packet.vy, packet.vz); vel *= 0.01f; gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D, packet.time_usec/1000, loc, vel, 10, 0, true); // rad/sec Vector3f gyros; gyros.x = packet.rollspeed; gyros.y = packet.pitchspeed; gyros.z = packet.yawspeed; // m/s/s Vector3f accels; accels.x = packet.xacc * (GRAVITY_MSS/1000.0f); accels.y = packet.yacc * (GRAVITY_MSS/1000.0f); accels.z = packet.zacc * (GRAVITY_MSS/1000.0f); ins.set_gyro(0, gyros); ins.set_accel(0, accels); compass.setHIL(packet.roll, packet.pitch, packet.yaw); break; } #endif // HIL_MODE #if CAMERA == ENABLED case MAVLINK_MSG_ID_DIGICAM_CONFIGURE: { camera.configure_msg(msg); break; } case MAVLINK_MSG_ID_DIGICAM_CONTROL: { camera.control_msg(msg); break; } #endif // CAMERA == ENABLED #if MOUNT == ENABLED case MAVLINK_MSG_ID_MOUNT_CONFIGURE: { camera_mount.configure_msg(msg); break; } case MAVLINK_MSG_ID_MOUNT_CONTROL: { camera_mount.control_msg(msg); break; } #endif // MOUNT == ENABLED case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: { handle_radio_status(msg, DataFlash, should_log(MASK_LOG_PM)); break; } case MAVLINK_MSG_ID_LOG_REQUEST_DATA: case MAVLINK_MSG_ID_LOG_ERASE: in_log_download = true; // fallthru case MAVLINK_MSG_ID_LOG_REQUEST_LIST: if (!in_mavlink_delay) { handle_log_message(msg, DataFlash); } break; case MAVLINK_MSG_ID_LOG_REQUEST_END: in_log_download = false; if (!in_mavlink_delay) { handle_log_message(msg, DataFlash); } break; #if HAL_CPU_CLASS > HAL_CPU_CLASS_16 case MAVLINK_MSG_ID_SERIAL_CONTROL: handle_serial_control(msg, gps); break; #endif } // end switch } // end handle mavlink /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ static void mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs[0].initialised || in_mavlink_delay) return; in_mavlink_delay = true; uint32_t tnow = millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs_send_message(MSG_HEARTBEAT); gcs_send_message(MSG_EXTENDED_STATUS1); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs_update(); gcs_data_stream_send(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM...")); } check_usb_mux(); in_mavlink_delay = false; } /* * send a message on both GCS links */ static void gcs_send_message(enum ap_message id) { for (uint8_t i=0; ivsnprintf_P((char *)gcs[0].pending_status.text, sizeof(gcs[0].pending_status.text), fmt, arg_list); va_end(arg_list); #if LOGGING_ENABLED == ENABLED DataFlash.Log_Write_Message(gcs[0].pending_status.text); #endif gcs[0].send_message(MSG_STATUSTEXT); for (uint8_t i=1; i