/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // 10 = 1 second #define ARM_DELAY 20 #define DISARM_DELAY 20 // called at 10hz static void arm_motors() { static int16_t arming_counter; // don't allow arming/disarming in anything but manual if (g.rc_3.control_in > 0) { arming_counter = 0; return; } if ((control_mode > ACRO) && ((control_mode != TOY_A) && (control_mode != TOY_M))) { arming_counter = 0; return; } #if FRAME_CONFIG == HELI_FRAME if ((motors.rsc_mode > 0) && (g.rc_8.control_in >= 10)){ arming_counter = 0; return; } #endif // HELI_FRAME #if TOY_EDF == ENABLED int16_t tmp = g.rc_1.control_in; #else int16_t tmp = g.rc_4.control_in; #endif // full right if (tmp > 4000) { if (arming_counter == ARM_DELAY) { if(motors.armed() == false) { // arm the motors and configure for flight //////////////////////////////////////////////////////////////////////////////// // Experimental AP_Limits library - set constraints, limits, fences, minima, maxima on various parameters //////////////////////////////////////////////////////////////////////////////// #ifdef AP_LIMITS if (limits.enabled() && limits.required()) { gcs_send_text_P(SEVERITY_LOW, PSTR("Limits - Running pre-arm checks")); // check only pre-arm required modules if (limits.check_required()) { gcs_send_text_P(SEVERITY_LOW, PSTR("ARMING PREVENTED - Limit Breached")); limits.set_state(LIMITS_TRIGGERED); gcs_send_message(MSG_LIMITS_STATUS); arming_counter++; // restart timer by cycling }else{ init_arm_motors(); } }else{ init_arm_motors(); } #else // without AP_LIMITS, just arm motors init_arm_motors(); #endif //AP_LIMITS_ENABLED } // keep going up arming_counter++; } else{ arming_counter++; } // full left }else if (tmp < -4000) { if (arming_counter == DISARM_DELAY) { if(motors.armed()) { // arm the motors and configure for flight init_disarm_motors(); } // keep going up arming_counter++; }else{ arming_counter++; } // Yaw is centered }else{ arming_counter = 0; } } static void init_arm_motors() { // arming marker // Flag used to track if we have armed the motors the first time. // This is used to decide if we should run the ground_start routine // which calibrates the IMU static bool did_ground_start = false; // disable failsafe because initialising everything takes a while failsafe_disable(); //cliSerial->printf("\nARM\n"); #if HIL_MODE != HIL_MODE_DISABLED || defined(DESKTOP_BUILD) gcs_send_text_P(SEVERITY_HIGH, PSTR("ARMING MOTORS")); #endif // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we arm // the motors hal.uartA->set_blocking_writes(false); if (gcs3.initialised) { hal.uartC->set_blocking_writes(false); } #if COPTER_LEDS == ENABLED if ( bitRead(g.copter_leds_mode, 3) ) { piezo_beep(); delay(50); piezo_beep(); } #endif // Remember Orientation // -------------------- init_simple_bearing(); // Reset home position // ------------------- if(ap.home_is_set) init_home(); // all I terms are invalid // ----------------------- reset_I_all(); if(did_ground_start == false) { did_ground_start = true; startup_ground(); } #if HIL_MODE != HIL_MODE_ATTITUDE // read Baro pressure at ground - // this resets Baro for more accuracy //----------------------------------- init_barometer(); #endif // temp hack ap_system.motor_light = true; digitalWrite(A_LED_PIN, LED_ON); // go back to normal AHRS gains ahrs.set_fast_gains(false); #if SECONDARY_DMP_ENABLED == ENABLED ahrs2.set_fast_gains(false); #endif // finally actually arm the motors motors.armed(true); set_armed(true); // reenable failsafe failsafe_enable(); } static void init_disarm_motors() { #if HIL_MODE != HIL_MODE_DISABLED || defined(DESKTOP_BUILD) gcs_send_text_P(SEVERITY_HIGH, PSTR("DISARMING MOTORS")); #endif motors.armed(false); set_armed(false); motors.auto_armed(false); set_auto_armed(false); compass.save_offsets(); g.throttle_cruise.save(); #if INERTIAL_NAV_XY == ENABLED || INERTIAL_NAV_Z == ENABLED inertial_nav.save_params(); #endif // we are not in the air set_takeoff_complete(false); #if COPTER_LEDS == ENABLED if ( bitRead(g.copter_leds_mode, 3) ) { piezo_beep(); } #endif // setup fast AHRS gains to get right attitude ahrs.set_fast_gains(true); #if SECONDARY_DMP_ENABLED == ENABLED ahrs2.set_fast_gains(true); #endif } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ static void set_servos_4() { #if FRAME_CONFIG != HELI_FRAME // temp fix for bad attitude g.rc_3.servo_out = min(g.rc_3.servo_out, 800); #endif motors.output(); }