// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- #include extern RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions]; // the aux. servo ch. assigned to each function AP_Mount::AP_Mount(const struct Location *current_loc, GPS *&gps, AP_AHRS *ahrs): _gps(gps) { _ahrs = ahrs; _current_loc = current_loc; //set_mode(MAV_MOUNT_MODE_RETRACT); set_mode(MAV_MOUNT_MODE_RC_TARGETING); // FIXME: This is just to test without mavlink //set_mode(MAV_MOUNT_MODE_GPS_POINT); // FIXME: this is to test ONLY targeting _retract_angles.x=0; _retract_angles.y=0; _retract_angles.z=0; } //sets the servo angles for retraction, note angles are * 100 void AP_Mount::set_retract_angles(int roll, int pitch, int yaw) { _retract_angles.x=roll; _retract_angles.y=pitch; _retract_angles.z=yaw; } //sets the servo angles for neutral, note angles are * 100 void AP_Mount::set_neutral_angles(int roll, int pitch, int yaw) { _neutral_angles.x=roll; _neutral_angles.y=pitch; _neutral_angles.z=yaw; } //sets the servo angles for MAVLink, note angles are * 100 void AP_Mount::set_mavlink_angles(int roll, int pitch, int yaw) { _mavlink_angles.x = roll; _mavlink_angles.y = pitch; _mavlink_angles.z = yaw; } // used to tell the mount to track GPS location void AP_Mount::set_GPS_target_location(Location targetGPSLocation) { _target_GPS_location=targetGPSLocation; } // This one should be called periodically void AP_Mount::update_mount_position() { switch(_mount_mode) { // move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage case MAV_MOUNT_MODE_RETRACT: _roll_angle =100*_retract_angles.x; _pitch_angle=100*_retract_angles.y; _yaw_angle =100*_retract_angles.z; break; // move mount to a neutral position, typically pointing forward case MAV_MOUNT_MODE_NEUTRAL: _roll_angle =100*_neutral_angles.x; _pitch_angle=100*_neutral_angles.y; _yaw_angle =100*_neutral_angles.z; break; // point to the angles given by a mavlink message case MAV_MOUNT_MODE_MAVLINK_TARGETING: { _roll_control_angle = _mavlink_angles.x; _pitch_control_angle = _mavlink_angles.y; _yaw_control_angle = _mavlink_angles.z; calculate(); break; } // RC radio manual angle control, but with stabilization from the AHRS case MAV_MOUNT_MODE_RC_TARGETING: { G_RC_AUX(k_mount_roll)->rc_input(&_roll_control_angle, _roll_angle); G_RC_AUX(k_mount_pitch)->rc_input(&_pitch_control_angle, _pitch_angle); G_RC_AUX(k_mount_yaw)->rc_input(&_yaw_control_angle, _yaw_angle); if (_ahrs){ calculate(); } else { if (g_rc_function[RC_Channel_aux::k_mount_roll]) _roll_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_roll]); if (g_rc_function[RC_Channel_aux::k_mount_pitch]) _pitch_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_pitch]); if (g_rc_function[RC_Channel_aux::k_mount_yaw]) _yaw_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_yaw]); } break; } // point mount to a GPS point given by the mission planner case MAV_MOUNT_MODE_GPS_POINT: { if(_gps->fix){ calc_GPS_target_angle(&_target_GPS_location); calculate(); } break; } default: //do nothing break; } // write the results to the servos /* G_RC_AUX(k_mount_roll)->angle_out(_roll_angle); G_RC_AUX(k_mount_pitch)->angle_out(_pitch_angle); G_RC_AUX(k_mount_yaw)->angle_out(_yaw_angle); */ // Change scaling to 0.1 degrees in order to avoid overflows in the angle arithmetic G_RC_AUX(k_mount_roll)->closest_limit(_roll_angle/10); G_RC_AUX(k_mount_pitch)->closest_limit(_pitch_angle/10); G_RC_AUX(k_mount_yaw)->closest_limit(_yaw_angle/10); } void AP_Mount::set_mode(enum MAV_MOUNT_MODE mode) { _mount_mode=mode; } // Change the configuration of the mount // triggered by a MavLink packet. void AP_Mount::configure_msg(mavlink_message_t* msg) { __mavlink_mount_configure_t packet; mavlink_msg_mount_configure_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) { // not for us return; } set_mode((enum MAV_MOUNT_MODE)packet.mount_mode); _stab_pitch = packet.stab_pitch; _stab_roll = packet.stab_roll; _stab_yaw = packet.stab_yaw; } // Control the mount (depends on the previously set mount configuration) // triggered by a MavLink packet. void AP_Mount::control_msg(mavlink_message_t *msg) { __mavlink_mount_control_t packet; mavlink_msg_mount_control_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) { // not for us return; } switch (_mount_mode) { case MAV_MOUNT_MODE_RETRACT: // Load and keep safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization set_retract_angles(packet.input_b, packet.input_a, packet.input_c); if (packet.save_position) { // TODO: Save current trimmed position on EEPROM } break; case MAV_MOUNT_MODE_NEUTRAL: // Load and keep neutral position (Roll,Pitch,Yaw) from EEPROM set_neutral_angles(packet.input_b, packet.input_a, packet.input_c); if (packet.save_position) { // TODO: Save current trimmed position on EEPROM } break; case MAV_MOUNT_MODE_MAVLINK_TARGETING: // Load neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization set_mavlink_angles(packet.input_b, packet.input_a, packet.input_c); break; case MAV_MOUNT_MODE_RC_TARGETING: // Load neutral position and start RC Roll,Pitch,Yaw control with stabilization break; case MAV_MOUNT_MODE_GPS_POINT: // Load neutral position and start to point to Lat,Lon,Alt Location targetGPSLocation; targetGPSLocation.lat = packet.input_a; targetGPSLocation.lng = packet.input_b; targetGPSLocation.alt = packet.input_c; set_GPS_target_location(targetGPSLocation); break; } } // Return mount status information (depends on the previously set mount configuration) // triggered by a MavLink packet. void AP_Mount::status_msg(mavlink_message_t *msg) { __mavlink_mount_status_t packet; mavlink_msg_mount_status_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) { // not for us return; } switch (_mount_mode) { case MAV_MOUNT_MODE_RETRACT: // safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization case MAV_MOUNT_MODE_NEUTRAL: // neutral position (Roll,Pitch,Yaw) from EEPROM case MAV_MOUNT_MODE_MAVLINK_TARGETING: // neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization case MAV_MOUNT_MODE_RC_TARGETING: // neutral position and start RC Roll,Pitch,Yaw control with stabilization packet.pointing_b = _roll_angle; ///< degrees*100 packet.pointing_a = _pitch_angle; ///< degrees*100 packet.pointing_c = _yaw_angle; ///< degrees*100 break; case MAV_MOUNT_MODE_GPS_POINT: // neutral position and start to point to Lat,Lon,Alt packet.pointing_a = _target_GPS_location.lat; ///< latitude packet.pointing_b = _target_GPS_location.lng; ///< longitude packet.pointing_c = _target_GPS_location.alt; ///< altitude break; } // status reply // TODO: is COMM_3 correct ? mavlink_msg_mount_status_send(MAVLINK_COMM_3, packet.target_system, packet.target_component, packet.pointing_a, packet.pointing_b, packet.pointing_c); } // Set mount point/region of interest, triggered by mission script commands void AP_Mount::set_roi_cmd() { // TODO get the information out of the mission command and use it } // Set mount configuration, triggered by mission script commands void AP_Mount::configure_cmd() { // TODO get the information out of the mission command and use it } // Control the mount (depends on the previously set mount configuration), triggered by mission script commands void AP_Mount::control_cmd() { // TODO get the information out of the mission command and use it } void AP_Mount::calc_GPS_target_angle(struct Location *target) { float GPS_vector_x = (target->lng-_current_loc->lng)*cos(ToRad((_current_loc->lat+target->lat)/(t7*2.0)))*.01113195; float GPS_vector_y = (target->lat-_current_loc->lat)*.01113195; float GPS_vector_z = (target->alt-_current_loc->alt); // baro altitude(IN CM) should be adjusted to known home elevation before take off (Set altimeter). float target_distance = 100.0*sqrt(GPS_vector_x*GPS_vector_x + GPS_vector_y*GPS_vector_y); // Careful , centimeters here locally. Baro/alt is in cm, lat/lon is in meters. _roll_control_angle = 0; _pitch_control_angle = atan2(GPS_vector_z, target_distance); _yaw_control_angle = atan2(GPS_vector_x, GPS_vector_y); // Converts +/- 180 into 0-360. if(_yaw_control_angle<0){ _yaw_control_angle += 2*M_PI; } } // Auto-detect the mount gimbal type depending on the functions assigned to the servos void AP_Mount::update_mount_type() { if ((g_rc_function[RC_Channel_aux::k_mount_roll] == NULL) && (g_rc_function[RC_Channel_aux::k_mount_pitch] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_yaw] != NULL)) { _mount_type = k_pan_tilt; } if ((g_rc_function[RC_Channel_aux::k_mount_roll] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_pitch] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_yaw] == NULL)) { _mount_type = k_tilt_roll; } if ((g_rc_function[RC_Channel_aux::k_mount_roll] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_pitch] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_yaw] != NULL)) { _mount_type = k_pan_tilt_roll; } } // Inputs desired _roll_control_angle, _pitch_control_angle and _yaw_control_angle stabilizes them relative to the airframe // and calculates output _roll_angle, _pitch_angle and _yaw_angle void AP_Mount::calculate() { Matrix3f m; ///< holds 3 x 3 matrix, var is used as temp in calcs Matrix3f cam; ///< Rotation matrix earth to camera. Desired camera from input. Matrix3f gimbal_target; ///< Rotation matrix from plane to camera. Then Euler angles to the servos. float roll; float pitch; float yaw; if (_ahrs){ m = _ahrs->get_dcm_matrix(); m.transpose(); cam.from_euler(_roll_control_angle, _pitch_control_angle, _yaw_control_angle); gimbal_target = m * cam; gimbal_target.to_euler(&roll, &pitch, &yaw); _roll_angle = degrees(roll)*100; _pitch_angle = degrees(pitch)*100; _yaw_angle = degrees(yaw)*100; } } // This function is needed to let the HIL code compile long AP_Mount::rc_map(RC_Channel_aux* rc_ch) { return (rc_ch->radio_in - rc_ch->radio_min) * (rc_ch->angle_max - rc_ch->angle_min) / (rc_ch->radio_max - rc_ch->radio_min) + rc_ch->angle_min; } // For testing and development. Called in the medium loop. void AP_Mount::debug_output() { Serial3.print("current - "); Serial3.print("lat "); Serial3.print(_current_loc->lat); Serial3.print(",lon "); Serial3.print(_current_loc->lng); Serial3.print(",alt "); Serial3.println(_current_loc->alt); Serial3.print("gps - "); Serial3.print("lat "); Serial3.print(_gps->latitude); Serial3.print(",lon "); Serial3.print(_gps->longitude); Serial3.print(",alt "); Serial3.print(_gps->altitude); Serial3.println(); Serial3.print("target - "); Serial3.print("lat "); Serial3.print(_target_GPS_location.lat); Serial3.print(",lon "); Serial3.print(_target_GPS_location.lng); Serial3.print(",alt "); Serial3.print(_target_GPS_location.alt); Serial3.print(" hdg to targ "); Serial3.print(degrees(_yaw_control_angle)); Serial3.println(); }