/* * The MIT License (MIT) * * Copyright (c) 2014 Pavel Kirienko * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Siddharth Bharat Purohit */ #include #include "AP_HAL_ChibiOS.h" #if HAL_NUM_CAN_IFACES #include #include #include # include #include #include # if !defined(STM32H7XX) && !defined(STM32G4) #include "CANIface.h" /* STM32F3's only CAN inteface does not have a number. */ #if defined(STM32F3XX) #define RCC_APB1ENR_CAN1EN RCC_APB1ENR_CANEN #define RCC_APB1RSTR_CAN1RST RCC_APB1RSTR_CANRST #define CAN1_TX_IRQn CAN_TX_IRQn #define CAN1_RX0_IRQn CAN_RX0_IRQn #define CAN1_RX1_IRQn CAN_RX1_IRQn #define CAN1_TX_IRQ_Handler STM32_CAN1_TX_HANDLER #define CAN1_RX0_IRQ_Handler STM32_CAN1_RX0_HANDLER #define CAN1_RX1_IRQ_Handler STM32_CAN1_RX1_HANDLER #else #define CAN1_TX_IRQ_Handler STM32_CAN1_TX_HANDLER #define CAN1_RX0_IRQ_Handler STM32_CAN1_RX0_HANDLER #define CAN1_RX1_IRQ_Handler STM32_CAN1_RX1_HANDLER #define CAN2_TX_IRQ_Handler STM32_CAN2_TX_HANDLER #define CAN2_RX0_IRQ_Handler STM32_CAN2_RX0_HANDLER #define CAN2_RX1_IRQ_Handler STM32_CAN2_RX1_HANDLER #endif // #if defined(STM32F3XX) #if HAL_CANMANAGER_ENABLED #define Debug(fmt, args...) do { AP::can().log_text(AP_CANManager::LOG_DEBUG, "CANIface", fmt, ##args); } while (0) #else #define Debug(fmt, args...) #endif #if !defined(HAL_BOOTLOADER_BUILD) #define PERF_STATS(x) (x++) #else #define PERF_STATS(x) #endif extern const AP_HAL::HAL& hal; using namespace ChibiOS; constexpr bxcan::CanType* const CANIface::Can[]; static ChibiOS::CANIface* can_ifaces[HAL_NUM_CAN_IFACES]; uint8_t CANIface::next_interface; // mapping from logical interface to physical. First physical is 0, first logical is 0 static constexpr uint8_t can_interfaces[HAL_NUM_CAN_IFACES] = { HAL_CAN_INTERFACE_LIST }; // mapping from physical interface back to logical. First physical is 0, first logical is 0 static constexpr int8_t can_iface_to_idx[3] = { HAL_CAN_INTERFACE_REV_LIST }; static inline void handleTxInterrupt(uint8_t phys_index) { const int8_t iface_index = can_iface_to_idx[phys_index]; if (iface_index < 0 || iface_index >= HAL_NUM_CAN_IFACES) { return; } uint64_t precise_time = AP_HAL::micros64(); if (precise_time > 0) { precise_time--; } if (can_ifaces[iface_index] != nullptr) { can_ifaces[iface_index]->handleTxInterrupt(precise_time); } } static inline void handleRxInterrupt(uint8_t phys_index, uint8_t fifo_index) { const int8_t iface_index = can_iface_to_idx[phys_index]; if (iface_index < 0 || iface_index >= HAL_NUM_CAN_IFACES) { return; } uint64_t precise_time = AP_HAL::micros64(); if (precise_time > 0) { precise_time--; } if (can_ifaces[iface_index] != nullptr) { can_ifaces[iface_index]->handleRxInterrupt(fifo_index, precise_time); } } /* * CANIface */ const uint32_t CANIface::TSR_ABRQx[CANIface::NumTxMailboxes] = { bxcan::TSR_ABRQ0, bxcan::TSR_ABRQ1, bxcan::TSR_ABRQ2 }; CANIface::CANIface(uint8_t index) : self_index_(index), rx_bytebuffer_((uint8_t*)rx_buffer, sizeof(rx_buffer)), rx_queue_(&rx_bytebuffer_) { if (index >= HAL_NUM_CAN_IFACES) { AP_HAL::panic("Bad CANIface index."); } else { can_ = Can[index]; } } // constructor suitable for array CANIface::CANIface() : CANIface(next_interface++) {} bool CANIface::computeTimings(uint32_t target_bitrate, Timings& out_timings) { if (target_bitrate < 1) { return false; } /* * Hardware configuration */ const uint32_t pclk = STM32_PCLK1; static const int MaxBS1 = 16; static const int MaxBS2 = 8; /* * Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG * CAN in Automation, 2003 * * According to the source, optimal quanta per bit are: * Bitrate Optimal Maximum * 1000 kbps 8 10 * 500 kbps 16 17 * 250 kbps 16 17 * 125 kbps 16 17 */ const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17; static const int MaxSamplePointLocation = 900; /* * Computing (prescaler * BS): * BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual * BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified * let: * BS = 1 + BS1 + BS2 -- Number of time quanta per bit * PRESCALER_BS = PRESCALER * BS * ==> * PRESCALER_BS = PCLK / BITRATE */ const uint32_t prescaler_bs = pclk / target_bitrate; /* * Searching for such prescaler value so that the number of quanta per bit is highest. */ uint8_t bs1_bs2_sum = uint8_t(max_quanta_per_bit - 1); while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) { if (bs1_bs2_sum <= 2) { return false; // No solution } bs1_bs2_sum--; } const uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum); if ((prescaler < 1U) || (prescaler > 1024U)) { return false; // No solution } /* * Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum. * We need to find the values so that the sample point is as close as possible to the optimal value. * * Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *) * {{bs2 -> (1 + bs1)/7}} * * Hence: * bs2 = (1 + bs1) / 7 * bs1 = (7 * bs1_bs2_sum - 1) / 8 * * Sample point location can be computed as follows: * Sample point location = (1 + bs1) / (1 + bs1 + bs2) * * Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one: * - With rounding to nearest * - With rounding to zero */ struct BsPair { uint8_t bs1; uint8_t bs2; uint16_t sample_point_permill; BsPair() : bs1(0), bs2(0), sample_point_permill(0) { } BsPair(uint8_t bs1_bs2_sum, uint8_t arg_bs1) : bs1(arg_bs1), bs2(uint8_t(bs1_bs2_sum - bs1)), sample_point_permill(uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2))) {} bool isValid() const { return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2); } }; // First attempt with rounding to nearest BsPair solution(bs1_bs2_sum, uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8)); if (solution.sample_point_permill > MaxSamplePointLocation) { // Second attempt with rounding to zero solution = BsPair(bs1_bs2_sum, uint8_t((7 * bs1_bs2_sum - 1) / 8)); } /* * Final validation * Helpful Python: * def sample_point_from_btr(x): * assert 0b0011110010000000111111000000000 & x == 0 * ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511 * return (1+ts1+1)/(1+ts1+1+ts2+1) * */ if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) { return false; } Debug("Timings: quanta/bit: %d, sample point location: %.1f%%", int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F); out_timings.prescaler = uint16_t(prescaler - 1U); out_timings.sjw = 0; // Which means one out_timings.bs1 = uint8_t(solution.bs1 - 1); out_timings.bs2 = uint8_t(solution.bs2 - 1); return true; } int16_t CANIface::send(const AP_HAL::CANFrame& frame, uint64_t tx_deadline, CanIOFlags flags) { if (frame.isErrorFrame() || frame.dlc > 8) { return -1; } PERF_STATS(stats.tx_requests); /* * Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because * it is possible that the highest-priority frame between select() and send() could have been * replaced with a lower priority one due to TX timeout. But we don't do this check because: * * - It is a highly unlikely scenario. * * - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new * frame can only have higher priority, which doesn't break the logic. * * - If high-priority frames are timing out in the TX queue, there's probably a lot of other * issues to take care of before this one becomes relevant. * * - It takes CPU time. Not just CPU time, but critical section time, which is expensive. */ { CriticalSectionLocker lock; /* * Seeking for an empty slot */ uint8_t txmailbox = 0xFF; if ((can_->TSR & bxcan::TSR_TME0) == bxcan::TSR_TME0) { txmailbox = 0; } else if ((can_->TSR & bxcan::TSR_TME1) == bxcan::TSR_TME1) { txmailbox = 1; } else if ((can_->TSR & bxcan::TSR_TME2) == bxcan::TSR_TME2) { txmailbox = 2; } else { PERF_STATS(stats.tx_overflow); return 0; // No transmission for you. } /* * Setting up the mailbox */ bxcan::TxMailboxType& mb = can_->TxMailbox[txmailbox]; if (frame.isExtended()) { mb.TIR = ((frame.id & AP_HAL::CANFrame::MaskExtID) << 3) | bxcan::TIR_IDE; } else { mb.TIR = ((frame.id & AP_HAL::CANFrame::MaskStdID) << 21); } if (frame.isRemoteTransmissionRequest()) { mb.TIR |= bxcan::TIR_RTR; } mb.TDTR = frame.dlc; mb.TDHR = frame.data_32[1]; mb.TDLR = frame.data_32[0]; mb.TIR |= bxcan::TIR_TXRQ; // Go. /* * Registering the pending transmission so we can track its deadline and loopback it as needed */ CanTxItem& txi = pending_tx_[txmailbox]; txi.deadline = tx_deadline; txi.frame = frame; txi.loopback = (flags & Loopback) != 0; txi.abort_on_error = (flags & AbortOnError) != 0; // setup frame initial state txi.pushed = false; } // also send on MAVCAN, but don't consider it an error if we can't send AP_HAL::CANIface::send(frame, tx_deadline, flags); return 1; } int16_t CANIface::receive(AP_HAL::CANFrame& out_frame, uint64_t& out_timestamp_us, CanIOFlags& out_flags) { { CriticalSectionLocker lock; CanRxItem rx_item; if (!rx_queue_.pop(rx_item)) { return 0; } out_frame = rx_item.frame; out_timestamp_us = rx_item.timestamp_us; out_flags = rx_item.flags; } return AP_HAL::CANIface::receive(out_frame, out_timestamp_us, out_flags); } #if !defined(HAL_BOOTLOADER_BUILD) bool CANIface::configureFilters(const CanFilterConfig* filter_configs, uint16_t num_configs) { #if !defined(HAL_BUILD_AP_PERIPH) // only do filtering for AP_Periph can_->FMR &= ~bxcan::FMR_FINIT; return true; #else if (mode_ != FilteredMode) { return false; } if (num_configs <= NumFilters && filter_configs != nullptr) { CriticalSectionLocker lock; can_->FMR |= bxcan::FMR_FINIT; // Slave (CAN2) gets half of the filters can_->FMR &= ~0x00003F00UL; can_->FMR |= static_cast(NumFilters) << 8; can_->FFA1R = 0x0AAAAAAA; // FIFO's are interleaved between filters can_->FM1R = 0; // Identifier Mask mode can_->FS1R = 0x7ffffff; // Single 32-bit for all const uint8_t filter_start_index = (self_index_ == 0) ? 0 : NumFilters; if (num_configs == 0) { can_->FilterRegister[filter_start_index].FR1 = 0; can_->FilterRegister[filter_start_index].FR2 = 0; can_->FA1R = 1 << filter_start_index; } else { for (uint8_t i = 0; i < NumFilters; i++) { if (i < num_configs) { uint32_t id = 0; uint32_t mask = 0; const CanFilterConfig* const cfg = filter_configs + i; if ((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF)) { id = (cfg->id & AP_HAL::CANFrame::MaskExtID) << 3; mask = (cfg->mask & AP_HAL::CANFrame::MaskExtID) << 3; id |= bxcan::RIR_IDE; } else { id = (cfg->id & AP_HAL::CANFrame::MaskStdID) << 21; // Regular std frames, nothing fancy. mask = (cfg->mask & AP_HAL::CANFrame::MaskStdID) << 21; // Boring. } if (cfg->id & AP_HAL::CANFrame::FlagRTR) { id |= bxcan::RIR_RTR; } if (cfg->mask & AP_HAL::CANFrame::FlagEFF) { mask |= bxcan::RIR_IDE; } if (cfg->mask & AP_HAL::CANFrame::FlagRTR) { mask |= bxcan::RIR_RTR; } can_->FilterRegister[filter_start_index + i].FR1 = id; can_->FilterRegister[filter_start_index + i].FR2 = mask; can_->FA1R |= (1 << (filter_start_index + i)); } else { can_->FA1R &= ~(1 << (filter_start_index + i)); } } } can_->FMR &= ~bxcan::FMR_FINIT; return true; } return false; #endif // AP_Periph } #endif bool CANIface::waitMsrINakBitStateChange(bool target_state) { const unsigned Timeout = 1000; for (unsigned wait_ack = 0; wait_ack < Timeout; wait_ack++) { const bool state = (can_->MSR & bxcan::MSR_INAK) != 0; if (state == target_state) { return true; } chThdSleep(chTimeMS2I(1)); } return false; } void CANIface::handleTxMailboxInterrupt(uint8_t mailbox_index, bool txok, const uint64_t timestamp_us) { if (mailbox_index > NumTxMailboxes) { return; } had_activity_ = had_activity_ || txok; CanTxItem& txi = pending_tx_[mailbox_index]; if (txi.loopback && txok && !txi.pushed) { CanRxItem rx_item; rx_item.frame = txi.frame; rx_item.timestamp_us = timestamp_us; rx_item.flags = AP_HAL::CANIface::Loopback; add_to_rx_queue(rx_item); } if (txok && !txi.pushed) { txi.pushed = true; PERF_STATS(stats.tx_success); #if !defined(HAL_BOOTLOADER_BUILD) stats.last_transmit_us = timestamp_us; #endif } } void CANIface::handleTxInterrupt(const uint64_t utc_usec) { // TXOK == false means that there was a hardware failure if (can_->TSR & bxcan::TSR_RQCP0) { const bool txok = can_->TSR & bxcan::TSR_TXOK0; can_->TSR = bxcan::TSR_RQCP0; handleTxMailboxInterrupt(0, txok, utc_usec); } if (can_->TSR & bxcan::TSR_RQCP1) { const bool txok = can_->TSR & bxcan::TSR_TXOK1; can_->TSR = bxcan::TSR_RQCP1; handleTxMailboxInterrupt(1, txok, utc_usec); } if (can_->TSR & bxcan::TSR_RQCP2) { const bool txok = can_->TSR & bxcan::TSR_TXOK2; can_->TSR = bxcan::TSR_RQCP2; handleTxMailboxInterrupt(2, txok, utc_usec); } if (sem_handle != nullptr) { PERF_STATS(stats.num_events); sem_handle->signal_ISR(); } pollErrorFlagsFromISR(); } void CANIface::handleRxInterrupt(uint8_t fifo_index, uint64_t timestamp_us) { volatile uint32_t* const rfr_reg = (fifo_index == 0) ? &can_->RF0R : &can_->RF1R; if ((*rfr_reg & bxcan::RFR_FMP_MASK) == 0) { return; } /* * Register overflow as a hardware error */ if ((*rfr_reg & bxcan::RFR_FOVR) != 0) { PERF_STATS(stats.rx_errors); } /* * Read the frame contents */ AP_HAL::CANFrame &frame = isr_rx_frame; const bxcan::RxMailboxType& rf = can_->RxMailbox[fifo_index]; if ((rf.RIR & bxcan::RIR_IDE) == 0) { frame.id = AP_HAL::CANFrame::MaskStdID & (rf.RIR >> 21); } else { frame.id = AP_HAL::CANFrame::MaskExtID & (rf.RIR >> 3); frame.id |= AP_HAL::CANFrame::FlagEFF; } if ((rf.RIR & bxcan::RIR_RTR) != 0) { frame.id |= AP_HAL::CANFrame::FlagRTR; } frame.dlc = rf.RDTR & 15; frame.data[0] = uint8_t(0xFF & (rf.RDLR >> 0)); frame.data[1] = uint8_t(0xFF & (rf.RDLR >> 8)); frame.data[2] = uint8_t(0xFF & (rf.RDLR >> 16)); frame.data[3] = uint8_t(0xFF & (rf.RDLR >> 24)); frame.data[4] = uint8_t(0xFF & (rf.RDHR >> 0)); frame.data[5] = uint8_t(0xFF & (rf.RDHR >> 8)); frame.data[6] = uint8_t(0xFF & (rf.RDHR >> 16)); frame.data[7] = uint8_t(0xFF & (rf.RDHR >> 24)); *rfr_reg = bxcan::RFR_RFOM | bxcan::RFR_FOVR | bxcan::RFR_FULL; // Release FIFO entry we just read /* * Store with timeout into the FIFO buffer and signal update event */ CanRxItem &rx_item = isr_rx_item; rx_item.frame = frame; rx_item.timestamp_us = timestamp_us; rx_item.flags = 0; if (add_to_rx_queue(rx_item)) { PERF_STATS(stats.rx_received); } else { PERF_STATS(stats.rx_overflow); } had_activity_ = true; if (sem_handle != nullptr) { PERF_STATS(stats.num_events); sem_handle->signal_ISR(); } pollErrorFlagsFromISR(); } void CANIface::pollErrorFlagsFromISR() { const uint8_t lec = uint8_t((can_->ESR & bxcan::ESR_LEC_MASK) >> bxcan::ESR_LEC_SHIFT); if (lec != 0) { #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) stats.esr = can_->ESR; // Record error status #endif can_->ESR = 0; // Serving abort requests for (int i = 0; i < NumTxMailboxes; i++) { CanTxItem& txi = pending_tx_[i]; if (txi.aborted && txi.abort_on_error) { can_->TSR = TSR_ABRQx[i]; txi.aborted = true; PERF_STATS(stats.tx_abort); } } } } void CANIface::discardTimedOutTxMailboxes(uint64_t current_time) { CriticalSectionLocker lock; for (int i = 0; i < NumTxMailboxes; i++) { CanTxItem& txi = pending_tx_[i]; if (txi.aborted || !txi.setup) { continue; } if (txi.deadline < current_time) { can_->TSR = TSR_ABRQx[i]; // Goodnight sweet transmission pending_tx_[i].aborted = true; PERF_STATS(stats.tx_timedout); } } } void CANIface::clear_rx() { CriticalSectionLocker lock; rx_queue_.clear(); } void CANIface::pollErrorFlags() { CriticalSectionLocker cs_locker; pollErrorFlagsFromISR(); } bool CANIface::canAcceptNewTxFrame(const AP_HAL::CANFrame& frame) const { /* * We can accept more frames only if the following conditions are satisfied: * - There is at least one TX mailbox free (obvious enough); * - The priority of the new frame is higher than priority of all TX mailboxes. */ { static const uint32_t TME = bxcan::TSR_TME0 | bxcan::TSR_TME1 | bxcan::TSR_TME2; const uint32_t tme = can_->TSR & TME; if (tme == TME) { // All TX mailboxes are free (as in freedom). return true; } if (tme == 0) { // All TX mailboxes are busy transmitting. return false; } } /* * The second condition requires a critical section. */ CriticalSectionLocker lock; for (int mbx = 0; mbx < NumTxMailboxes; mbx++) { if (!(pending_tx_[mbx].pushed || pending_tx_[mbx].aborted) && !frame.priorityHigherThan(pending_tx_[mbx].frame)) { return false; // There's a mailbox whose priority is higher or equal the priority of the new frame. } } return true; // This new frame will be added to a free TX mailbox in the next @ref send(). } bool CANIface::isRxBufferEmpty() const { CriticalSectionLocker lock; return rx_queue_.available() == 0; } #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) uint32_t CANIface::getErrorCount() const { CriticalSectionLocker lock; return stats.num_busoff_err + stats.rx_errors + stats.rx_overflow + stats.tx_rejected + stats.tx_abort + stats.tx_timedout; } #endif // #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) bool CANIface::set_event_handle(AP_HAL::BinarySemaphore *handle) { sem_handle = handle; return true; } void CANIface::checkAvailable(bool& read, bool& write, const AP_HAL::CANFrame* pending_tx) const { write = false; read = !isRxBufferEmpty(); if (pending_tx != nullptr) { write = canAcceptNewTxFrame(*pending_tx); } } bool CANIface::select(bool &read, bool &write, const AP_HAL::CANFrame* pending_tx, uint64_t blocking_deadline) { const bool in_read = read; const bool in_write= write; uint64_t time = AP_HAL::micros64(); if (!read && !write) { //invalid request return false; } discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots pollErrorFlags(); checkAvailable(read, write, pending_tx); // Check if we already have some of the requested events if ((read && in_read) || (write && in_write)) { return true; } #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) // we don't support blocking select in AP_Periph and bootloader while (time < blocking_deadline) { if (sem_handle == nullptr) { break; } IGNORE_RETURN(sem_handle->wait(blocking_deadline - time)); // Block until timeout expires or any iface updates checkAvailable(read, write, pending_tx); // Check what we got if ((read && in_read) || (write && in_write)) { return true; } time = AP_HAL::micros64(); } #endif // #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) return true; } void CANIface::initOnce(bool enable_irq) { /* * CAN1, CAN2 */ { CriticalSectionLocker lock; switch (can_interfaces[self_index_]) { case 0: #if defined(RCC_APB1ENR1_CAN1EN) RCC->APB1ENR1 |= RCC_APB1ENR1_CAN1EN; RCC->APB1RSTR1 |= RCC_APB1RSTR1_CAN1RST; RCC->APB1RSTR1 &= ~RCC_APB1RSTR1_CAN1RST; #else RCC->APB1ENR |= RCC_APB1ENR_CAN1EN; RCC->APB1RSTR |= RCC_APB1RSTR_CAN1RST; RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN1RST; #endif break; #if defined(RCC_APB1ENR1_CAN2EN) case 1: RCC->APB1ENR1 |= RCC_APB1ENR1_CAN2EN; RCC->APB1RSTR1 |= RCC_APB1RSTR1_CAN2RST; RCC->APB1RSTR1 &= ~RCC_APB1RSTR1_CAN2RST; break; #elif defined(RCC_APB1ENR_CAN2EN) case 1: RCC->APB1ENR |= RCC_APB1ENR_CAN2EN; RCC->APB1RSTR |= RCC_APB1RSTR_CAN2RST; RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN2RST; break; #endif #ifdef RCC_APB1ENR_CAN3EN case 2: RCC->APB1ENR |= RCC_APB1ENR_CAN3EN; RCC->APB1RSTR |= RCC_APB1RSTR_CAN3RST; RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN3RST; break; #endif } } /* * IRQ */ if (!irq_init_ && enable_irq) { CriticalSectionLocker lock; switch (can_interfaces[self_index_]) { case 0: #ifdef HAL_CAN_IFACE1_ENABLE nvicEnableVector(CAN1_TX_IRQn, CORTEX_MAX_KERNEL_PRIORITY); nvicEnableVector(CAN1_RX0_IRQn, CORTEX_MAX_KERNEL_PRIORITY); nvicEnableVector(CAN1_RX1_IRQn, CORTEX_MAX_KERNEL_PRIORITY); #endif break; case 1: #ifdef HAL_CAN_IFACE2_ENABLE nvicEnableVector(CAN2_TX_IRQn, CORTEX_MAX_KERNEL_PRIORITY); nvicEnableVector(CAN2_RX0_IRQn, CORTEX_MAX_KERNEL_PRIORITY); nvicEnableVector(CAN2_RX1_IRQn, CORTEX_MAX_KERNEL_PRIORITY); #endif break; case 2: #ifdef HAL_CAN_IFACE3_ENABLE nvicEnableVector(CAN3_TX_IRQn, CORTEX_MAX_KERNEL_PRIORITY); nvicEnableVector(CAN3_RX0_IRQn, CORTEX_MAX_KERNEL_PRIORITY); nvicEnableVector(CAN3_RX1_IRQn, CORTEX_MAX_KERNEL_PRIORITY); #endif break; } irq_init_ = true; } } bool CANIface::init(const uint32_t bitrate, const CANIface::OperatingMode mode) { Debug("Bitrate %lu mode %d", static_cast(bitrate), static_cast(mode)); if (self_index_ > HAL_NUM_CAN_IFACES) { Debug("CAN drv init failed"); return false; } if (can_ifaces[self_index_] == nullptr) { can_ifaces[self_index_] = this; #if !defined(HAL_BOOTLOADER_BUILD) AP_HAL::get_HAL_mutable().can[self_index_] = this; #endif } bitrate_ = bitrate; mode_ = mode; if (can_ifaces[0] == nullptr) { can_ifaces[0] = NEW_NOTHROW CANIface(0); Debug("Failed to allocate CAN iface 0"); if (can_ifaces[0] == nullptr) { return false; } } if (self_index_ == 1 && !can_ifaces[0]->is_initialized()) { Debug("Iface 0 is not initialized yet but we need it for Iface 1, trying to init it"); Debug("Enabling CAN iface 0"); can_ifaces[0]->initOnce(false); Debug("Initing iface 0..."); if (!can_ifaces[0]->init(bitrate, mode)) { Debug("Iface 0 init failed"); return false; } Debug("Enabling CAN iface"); } initOnce(true); /* * We need to silence the controller in the first order, otherwise it may interfere with the following operations. */ { CriticalSectionLocker lock; can_->MCR &= ~bxcan::MCR_SLEEP; // Exit sleep mode can_->MCR |= bxcan::MCR_INRQ; // Request init can_->IER = 0; // Disable interrupts while initialization is in progress } if (!waitMsrINakBitStateChange(true)) { Debug("MSR INAK not set"); can_->MCR = bxcan::MCR_RESET; return false; } /* * Object state - interrupts are disabled, so it's safe to modify it now */ rx_queue_.clear(); for (uint32_t i=0; i < NumTxMailboxes; i++) { pending_tx_[i] = CanTxItem(); } had_activity_ = false; /* * CAN timings for this bitrate */ Timings timings; if (!computeTimings(bitrate, timings)) { can_->MCR = bxcan::MCR_RESET; return false; } Debug("Timings: presc=%u sjw=%u bs1=%u bs2=%u", unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2)); /* * Hardware initialization (the hardware has already confirmed initialization mode, see above) */ can_->MCR = bxcan::MCR_ABOM | bxcan::MCR_AWUM | bxcan::MCR_INRQ; // RM page 648 can_->BTR = ((timings.sjw & 3U) << 24) | ((timings.bs1 & 15U) << 16) | ((timings.bs2 & 7U) << 20) | (timings.prescaler & 1023U) | ((mode == SilentMode) ? bxcan::BTR_SILM : 0); can_->IER = bxcan::IER_TMEIE | // TX mailbox empty bxcan::IER_FMPIE0 | // RX FIFO 0 is not empty bxcan::IER_FMPIE1; // RX FIFO 1 is not empty can_->MCR &= ~bxcan::MCR_INRQ; // Leave init mode if (!waitMsrINakBitStateChange(false)) { Debug("MSR INAK not cleared"); can_->MCR = bxcan::MCR_RESET; return false; } /* * Default filter configuration */ if (self_index_ == 0) { can_->FMR |= bxcan::FMR_FINIT; can_->FMR &= 0xFFFFC0F1; can_->FMR |= static_cast(NumFilters) << 8; // Slave (CAN2) gets half of the filters can_->FFA1R = 0; // All assigned to FIFO0 by default can_->FM1R = 0; // Indentifier Mask mode #if HAL_NUM_CAN_IFACES > 1 can_->FS1R = 0x7ffffff; // Single 32-bit for all can_->FilterRegister[0].FR1 = 0; // CAN1 accepts everything can_->FilterRegister[0].FR2 = 0; can_->FilterRegister[NumFilters].FR1 = 0; // CAN2 accepts everything can_->FilterRegister[NumFilters].FR2 = 0; can_->FA1R = 1 | (1 << NumFilters); // One filter per each iface #else can_->FS1R = 0x1fff; can_->FilterRegister[0].FR1 = 0; can_->FilterRegister[0].FR2 = 0; can_->FA1R = 1; #endif can_->FMR &= ~bxcan::FMR_FINIT; } initialised_ = true; return true; } #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) void CANIface::get_stats(ExpandingString &str) { CriticalSectionLocker lock; str.printf("tx_requests: %lu\n" "tx_rejected: %lu\n" "tx_success: %lu\n" "tx_timedout: %lu\n" "tx_abort: %lu\n" "rx_received: %lu\n" "rx_overflow: %lu\n" "rx_errors: %lu\n" "num_busoff_err: %lu\n" "num_events: %lu\n" "ESR: %lx\n", stats.tx_requests, stats.tx_rejected, stats.tx_success, stats.tx_timedout, stats.tx_abort, stats.rx_received, stats.rx_overflow, stats.rx_errors, stats.num_busoff_err, stats.num_events, stats.esr); } #endif /* * Interrupt handlers */ extern "C" { #ifdef HAL_CAN_IFACE1_ENABLE // CAN1 CH_IRQ_HANDLER(CAN1_TX_IRQ_Handler); CH_IRQ_HANDLER(CAN1_TX_IRQ_Handler) { CH_IRQ_PROLOGUE(); handleTxInterrupt(0); CH_IRQ_EPILOGUE(); } CH_IRQ_HANDLER(CAN1_RX0_IRQ_Handler); CH_IRQ_HANDLER(CAN1_RX0_IRQ_Handler) { CH_IRQ_PROLOGUE(); handleRxInterrupt(0, 0); CH_IRQ_EPILOGUE(); } CH_IRQ_HANDLER(CAN1_RX1_IRQ_Handler); CH_IRQ_HANDLER(CAN1_RX1_IRQ_Handler) { CH_IRQ_PROLOGUE(); handleRxInterrupt(0, 1); CH_IRQ_EPILOGUE(); } #endif #ifdef HAL_CAN_IFACE2_ENABLE // CAN2 CH_IRQ_HANDLER(CAN2_TX_IRQ_Handler); CH_IRQ_HANDLER(CAN2_TX_IRQ_Handler) { CH_IRQ_PROLOGUE(); handleTxInterrupt(1); CH_IRQ_EPILOGUE(); } CH_IRQ_HANDLER(CAN2_RX0_IRQ_Handler); CH_IRQ_HANDLER(CAN2_RX0_IRQ_Handler) { CH_IRQ_PROLOGUE(); handleRxInterrupt(1, 0); CH_IRQ_EPILOGUE(); } CH_IRQ_HANDLER(CAN2_RX1_IRQ_Handler); CH_IRQ_HANDLER(CAN2_RX1_IRQ_Handler) { CH_IRQ_PROLOGUE(); handleRxInterrupt(1, 1); CH_IRQ_EPILOGUE(); } #endif #ifdef HAL_CAN_IFACE3_ENABLE // CAN3 CH_IRQ_HANDLER(CAN3_TX_IRQ_Handler); CH_IRQ_HANDLER(CAN3_TX_IRQ_Handler) { CH_IRQ_PROLOGUE(); handleTxInterrupt(2); CH_IRQ_EPILOGUE(); } CH_IRQ_HANDLER(CAN3_RX0_IRQ_Handler); CH_IRQ_HANDLER(CAN3_RX0_IRQ_Handler) { CH_IRQ_PROLOGUE(); handleRxInterrupt(2, 0); CH_IRQ_EPILOGUE(); } CH_IRQ_HANDLER(CAN3_RX1_IRQ_Handler); CH_IRQ_HANDLER(CAN3_RX1_IRQ_Handler) { CH_IRQ_PROLOGUE(); handleRxInterrupt(2, 1); CH_IRQ_EPILOGUE(); } #endif } // extern "C" #endif //!defined(STM32H7XX) #endif //HAL_NUM_CAN_IFACES