// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /// @file PID.cpp /// @brief Generic PID algorithm #include #include "PID.h" #include #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo PID::var_info[] = { // @Param: P // @DisplayName: PID Proportional Gain // @Description: P Gain which produces an output value that is proportional to the current error value AP_GROUPINFO("P", 0, PID, _kp, 0), // @Param: I // @DisplayName: PID Integral Gain // @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error AP_GROUPINFO("I", 1, PID, _ki, 0), // @Param: D // @DisplayName: PID Derivative Gain // @Description: D Gain which produces an output that is proportional to the rate of change of the error AP_GROUPINFO("D", 2, PID, _kd, 0), // @Param: IMAX // @DisplayName: PID Integral Maximum // @Description: The maximum/minimum value that the I term can output AP_GROUPINFO("IMAX", 3, PID, _imax, 0), AP_GROUPEND }; float PID::get_pid(float error, float scaler) { uint32_t tnow = AP_HAL::millis(); uint32_t dt = tnow - _last_t; float output = 0; float delta_time; if (_last_t == 0 || dt > 1000) { dt = 0; // if this PID hasn't been used for a full second then zero // the intergator term. This prevents I buildup from a // previous fight mode from causing a massive return before // the integrator gets a chance to correct itself reset_I(); } _last_t = tnow; delta_time = (float)dt / 1000.0f; // Compute proportional component output += error * _kp; // Compute derivative component if time has elapsed if ((fabsf(_kd) > 0) && (dt > 0)) { float derivative; if (isnan(_last_derivative)) { // we've just done a reset, suppress the first derivative // term as we don't want a sudden change in input to cause // a large D output change derivative = 0; _last_derivative = 0; } else { derivative = (error - _last_error) / delta_time; } // discrete low pass filter, cuts out the // high frequency noise that can drive the controller crazy float RC = 1/(2*PI*_fCut); derivative = _last_derivative + ((delta_time / (RC + delta_time)) * (derivative - _last_derivative)); // update state _last_error = error; _last_derivative = derivative; // add in derivative component output += _kd * derivative; } // scale the P and D components output *= scaler; // Compute integral component if time has elapsed if ((fabsf(_ki) > 0) && (dt > 0)) { _integrator += (error * _ki) * scaler * delta_time; if (_integrator < -_imax) { _integrator = -_imax; } else if (_integrator > _imax) { _integrator = _imax; } output += _integrator; } return output; } int16_t PID::get_pid_4500(float error, float scaler) { float v = get_pid(error, scaler); return constrain_float(v, -4500, 4500); } void PID::reset_I() { _integrator = 0; // we use NAN (Not A Number) to indicate that the last // derivative value is not valid _last_derivative = NAN; } void PID::load_gains() { _kp.load(); _ki.load(); _kd.load(); _imax.load(); } void PID::save_gains() { _kp.save(); _ki.save(); _kd.save(); _imax.save(); }