// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // use this to prevent recursion during sensor init static bool in_mavlink_delay; // this costs us 51 bytes, but means that low priority // messages don't block the CPU static mavlink_statustext_t pending_status; // true when we have received at least 1 MAVLink packet static bool mavlink_active; // true if we are out of time in our event timeslice static bool gcs_out_of_time; // check if a message will fit in the payload space available #define CHECK_PAYLOAD_SIZE(id) if (payload_space < MAVLINK_MSG_ID_ ## id ## _LEN) return false // prototype this for use inside the GCS class static void gcs_send_text_fmt(const prog_char_t *fmt, ...); static void gcs_send_heartbeat(void) { gcs_send_message(MSG_HEARTBEAT); } static void gcs_send_deferred(void) { gcs_send_message(MSG_RETRY_DEFERRED); } /* * !!NOTE!! * * the use of NOINLINE separate functions for each message type avoids * a compiler bug in gcc that would cause it to use far more stack * space than is needed. Without the NOINLINE we use the sum of the * stack needed for each message type. Please be careful to follow the * pattern below when adding any new messages */ static NOINLINE void send_heartbeat(mavlink_channel_t chan) { uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; uint8_t system_status = MAV_STATE_ACTIVE; uint32_t custom_mode = control_mode; if (ap.failsafe_radio == true) { system_status = MAV_STATE_CRITICAL; } // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; switch (control_mode) { case AUTO: case RTL: case LOITER: case GUIDED: case CIRCLE: base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; } // all modes except INITIALISING have some form of manual // override if stick mixing is enabled base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; #if HIL_MODE != HIL_MODE_DISABLED base_mode |= MAV_MODE_FLAG_HIL_ENABLED; #endif // we are armed if we are not initialising if (motors.armed()) { base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; mavlink_msg_heartbeat_send( chan, MAV_TYPE_QUADROTOR, MAV_AUTOPILOT_ARDUPILOTMEGA, base_mode, custom_mode, system_status); } static NOINLINE void send_attitude(mavlink_channel_t chan) { mavlink_msg_attitude_send( chan, millis(), ahrs.roll, ahrs.pitch, ahrs.yaw, omega.x, omega.y, omega.z); } #if AP_LIMITS == ENABLED static NOINLINE void send_limits_status(mavlink_channel_t chan) { limits_send_mavlink_status(chan); } #endif static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t packet_drops) { uint32_t control_sensors_present = 0; uint32_t control_sensors_enabled; uint32_t control_sensors_health; // first what sensors/controllers we have control_sensors_present |= (1<<0); // 3D gyro present control_sensors_present |= (1<<1); // 3D accelerometer present if (g.compass_enabled) { control_sensors_present |= (1<<2); // compass present } control_sensors_present |= (1<<3); // absolute pressure sensor present if (g_gps != NULL && g_gps->status() >= GPS::NO_FIX) { control_sensors_present |= (1<<5); // GPS present } control_sensors_present |= (1<<10); // 3D angular rate control control_sensors_present |= (1<<11); // attitude stabilisation control_sensors_present |= (1<<12); // yaw position control_sensors_present |= (1<<13); // altitude control control_sensors_present |= (1<<14); // X/Y position control control_sensors_present |= (1<<15); // motor control // now what sensors/controllers are enabled // first the sensors control_sensors_enabled = control_sensors_present & 0x1FF; // now the controllers control_sensors_enabled = control_sensors_present & 0x1FF; control_sensors_enabled |= (1<<10); // 3D angular rate control control_sensors_enabled |= (1<<11); // attitude stabilisation control_sensors_enabled |= (1<<13); // altitude control control_sensors_enabled |= (1<<15); // motor control switch (control_mode) { case AUTO: case RTL: case LOITER: case GUIDED: case CIRCLE: case POSITION: control_sensors_enabled |= (1<<12); // yaw position control_sensors_enabled |= (1<<14); // X/Y position control break; } // at the moment all sensors/controllers are assumed healthy control_sensors_health = control_sensors_present; if (!compass.healthy) { control_sensors_health &= ~(1<<2); // compass } if (!compass.use_for_yaw()) { control_sensors_enabled &= ~(1<<2); // compass } uint16_t battery_current = -1; uint8_t battery_remaining = -1; if (current_total1 != 0 && g.pack_capacity != 0) { battery_remaining = (100.0f * (g.pack_capacity - current_total1) / g.pack_capacity); } if (current_total1 != 0) { battery_current = current_amps1 * 100; } if (g.battery_monitoring == BATT_MONITOR_VOLTAGE_ONLY) { /*setting a out-of-range value. * It informs to external devices that * it cannot be calculated properly just by voltage*/ battery_remaining = 150; } mavlink_msg_sys_status_send( chan, control_sensors_present, control_sensors_enabled, control_sensors_health, 0, // CPU Load not supported in AC yet battery_voltage1 * 1000, // mV battery_current, // in 10mA units battery_remaining, // in % 0, // comm drops %, 0, // comm drops in pkts, 0, 0, 0, 0); } static void NOINLINE send_meminfo(mavlink_channel_t chan) { #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_APM2 extern unsigned __brkval; mavlink_msg_meminfo_send(chan, __brkval, memcheck_available_memory()); #endif } static void NOINLINE send_location(mavlink_channel_t chan) { uint32_t fix_time; // if we have a GPS fix, take the time as the last fix time. That // allows us to correctly calculate velocities and extrapolate // positions. // If we don't have a GPS fix then we are dead reckoning, and will // use the current boot time as the fix time. if (g_gps->status() >= GPS::GPS_OK_FIX_2D) { fix_time = g_gps->last_fix_time; } else { fix_time = millis(); } mavlink_msg_global_position_int_send( chan, fix_time, current_loc.lat, // in 1E7 degrees current_loc.lng, // in 1E7 degrees g_gps->altitude * 10, // millimeters above sea level (current_loc.alt - home.alt) * 10, // millimeters above ground g_gps->velocity_north() * 100, // X speed cm/s (+ve North) g_gps->velocity_east() * 100, // Y speed cm/s (+ve East) g_gps->velocity_down() * -100, // Z speed cm/s (+ve up) g_gps->ground_course); // course in 1/100 degree } static void NOINLINE send_nav_controller_output(mavlink_channel_t chan) { mavlink_msg_nav_controller_output_send( chan, nav_roll / 1.0e2f, nav_pitch / 1.0e2f, wp_bearing / 1.0e2f, wp_bearing / 1.0e2f, wp_distance / 1.0e2f, altitude_error / 1.0e2f, 0, 0); } static void NOINLINE send_ahrs(mavlink_channel_t chan) { Vector3f omega_I = ahrs.get_gyro_drift(); mavlink_msg_ahrs_send( chan, omega_I.x, omega_I.y, omega_I.z, 1, 0, ahrs.get_error_rp(), ahrs.get_error_yaw()); } #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL // report simulator state static void NOINLINE send_simstate(mavlink_channel_t chan) { sitl.simstate_send(chan); } #endif static void NOINLINE send_hwstatus(mavlink_channel_t chan) { mavlink_msg_hwstatus_send( chan, board_voltage(), hal.i2c->lockup_count()); } static void NOINLINE send_gps_raw(mavlink_channel_t chan) { mavlink_msg_gps_raw_int_send( chan, g_gps->last_fix_time*(uint64_t)1000, g_gps->status(), g_gps->latitude, // in 1E7 degrees g_gps->longitude, // in 1E7 degrees g_gps->altitude * 10, // in mm g_gps->hdop, 65535, g_gps->ground_speed, // cm/s g_gps->ground_course, // 1/100 degrees, g_gps->num_sats); } static void NOINLINE send_servo_out(mavlink_channel_t chan) { // normalized values scaled to -10000 to 10000 // This is used for HIL. Do not change without discussing with HIL maintainers #if FRAME_CONFIG == HELI_FRAME mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 g.rc_1.servo_out, g.rc_2.servo_out, g.rc_3.radio_out, g.rc_4.servo_out, 0, 0, 0, 0, receiver_rssi); #else #if X_PLANE == ENABLED /* update by JLN for X-Plane HIL */ if(motors.armed() && motors.auto_armed()) { mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 g.rc_1.servo_out, g.rc_2.servo_out, 10000 * g.rc_3.norm_output(), g.rc_4.servo_out, 10000 * g.rc_1.norm_output(), 10000 * g.rc_2.norm_output(), 10000 * g.rc_3.norm_output(), 10000 * g.rc_4.norm_output(), receiver_rssi); }else{ mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 0, 0, -10000, 0, 10000 * g.rc_1.norm_output(), 10000 * g.rc_2.norm_output(), 10000 * g.rc_3.norm_output(), 10000 * g.rc_4.norm_output(), receiver_rssi); } #else mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 g.rc_1.servo_out, g.rc_2.servo_out, g.rc_3.radio_out, g.rc_4.servo_out, 10000 * g.rc_1.norm_output(), 10000 * g.rc_2.norm_output(), 10000 * g.rc_3.norm_output(), 10000 * g.rc_4.norm_output(), receiver_rssi); #endif #endif } static void NOINLINE send_radio_in(mavlink_channel_t chan) { mavlink_msg_rc_channels_raw_send( chan, millis(), 0, // port g.rc_1.radio_in, g.rc_2.radio_in, g.rc_3.radio_in, g.rc_4.radio_in, g.rc_5.radio_in, g.rc_6.radio_in, g.rc_7.radio_in, g.rc_8.radio_in, receiver_rssi); } static void NOINLINE send_radio_out(mavlink_channel_t chan) { mavlink_msg_servo_output_raw_send( chan, micros(), 0, // port motors.motor_out[AP_MOTORS_MOT_1], motors.motor_out[AP_MOTORS_MOT_2], motors.motor_out[AP_MOTORS_MOT_3], motors.motor_out[AP_MOTORS_MOT_4], motors.motor_out[AP_MOTORS_MOT_5], motors.motor_out[AP_MOTORS_MOT_6], motors.motor_out[AP_MOTORS_MOT_7], motors.motor_out[AP_MOTORS_MOT_8]); } static void NOINLINE send_vfr_hud(mavlink_channel_t chan) { mavlink_msg_vfr_hud_send( chan, (float)g_gps->ground_speed / 100.0f, (float)g_gps->ground_speed / 100.0f, (ahrs.yaw_sensor / 100) % 360, g.rc_3.servo_out/10, current_loc.alt / 100.0f, climb_rate / 100.0f); } static void NOINLINE send_raw_imu1(mavlink_channel_t chan) { Vector3f accel = ins.get_accel(); Vector3f gyro = ins.get_gyro(); mavlink_msg_raw_imu_send( chan, micros(), accel.x * 1000.0f / GRAVITY_MSS, accel.y * 1000.0f / GRAVITY_MSS, accel.z * 1000.0f / GRAVITY_MSS, gyro.x * 1000.0f, gyro.y * 1000.0f, gyro.z * 1000.0f, compass.mag_x, compass.mag_y, compass.mag_z); } static void NOINLINE send_raw_imu2(mavlink_channel_t chan) { mavlink_msg_scaled_pressure_send( chan, millis(), (float)barometer.get_pressure()/100.0f, (float)(barometer.get_pressure() - barometer.get_ground_pressure())/100.0f, (int)(barometer.get_temperature()*10)); } static void NOINLINE send_raw_imu3(mavlink_channel_t chan) { Vector3f mag_offsets = compass.get_offsets(); Vector3f accel_offsets = ins.get_accel_offsets(); Vector3f gyro_offsets = ins.get_gyro_offsets(); mavlink_msg_sensor_offsets_send(chan, mag_offsets.x, mag_offsets.y, mag_offsets.z, compass.get_declination(), barometer.get_raw_pressure(), barometer.get_raw_temp(), gyro_offsets.x, gyro_offsets.y, gyro_offsets.z, accel_offsets.x, accel_offsets.y, accel_offsets.z); } static void NOINLINE send_current_waypoint(mavlink_channel_t chan) { mavlink_msg_mission_current_send( chan, (uint16_t)g.command_index); } static void NOINLINE send_statustext(mavlink_channel_t chan) { mavlink_msg_statustext_send( chan, pending_status.severity, pending_status.text); } // are we still delaying telemetry to try to avoid Xbee bricking? static bool telemetry_delayed(mavlink_channel_t chan) { uint32_t tnow = millis() >> 10; if (tnow > (uint8_t)g.telem_delay) { return false; } #if USB_MUX_PIN > 0 if (chan == MAVLINK_COMM_0 && ap_system.usb_connected) { // this is an APM2 with USB telemetry return false; } // we're either on the 2nd UART, or no USB cable is connected // we need to delay telemetry return true; #else if (chan == MAVLINK_COMM_0) { // we're on the USB port return false; } // don't send telemetry yet return true; #endif } // try to send a message, return false if it won't fit in the serial tx buffer static bool mavlink_try_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops) { int16_t payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES; if (telemetry_delayed(chan)) { return false; } // if we don't have at least 1ms remaining before the main loop // wants to fire then don't send a mavlink message. We want to // prioritise the main flight control loop over communications if (scheduler.time_available_usec() < 800 && motors.armed()) { gcs_out_of_time = true; return false; } switch(id) { case MSG_HEARTBEAT: CHECK_PAYLOAD_SIZE(HEARTBEAT); send_heartbeat(chan); break; case MSG_EXTENDED_STATUS1: CHECK_PAYLOAD_SIZE(SYS_STATUS); send_extended_status1(chan, packet_drops); break; case MSG_EXTENDED_STATUS2: CHECK_PAYLOAD_SIZE(MEMINFO); send_meminfo(chan); break; case MSG_ATTITUDE: CHECK_PAYLOAD_SIZE(ATTITUDE); send_attitude(chan); break; case MSG_LOCATION: CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT); send_location(chan); break; case MSG_NAV_CONTROLLER_OUTPUT: CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); send_nav_controller_output(chan); break; case MSG_GPS_RAW: CHECK_PAYLOAD_SIZE(GPS_RAW_INT); send_gps_raw(chan); break; case MSG_SERVO_OUT: CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); send_servo_out(chan); break; case MSG_RADIO_IN: CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW); send_radio_in(chan); break; case MSG_RADIO_OUT: CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW); send_radio_out(chan); break; case MSG_VFR_HUD: CHECK_PAYLOAD_SIZE(VFR_HUD); send_vfr_hud(chan); break; case MSG_RAW_IMU1: CHECK_PAYLOAD_SIZE(RAW_IMU); send_raw_imu1(chan); break; case MSG_RAW_IMU2: CHECK_PAYLOAD_SIZE(SCALED_PRESSURE); send_raw_imu2(chan); break; case MSG_RAW_IMU3: CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS); send_raw_imu3(chan); break; case MSG_CURRENT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_CURRENT); send_current_waypoint(chan); break; case MSG_NEXT_PARAM: CHECK_PAYLOAD_SIZE(PARAM_VALUE); if (chan == MAVLINK_COMM_0) { gcs0.queued_param_send(); } else if (gcs3.initialised) { gcs3.queued_param_send(); } break; case MSG_NEXT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_REQUEST); if (chan == MAVLINK_COMM_0) { gcs0.queued_waypoint_send(); } else { gcs3.queued_waypoint_send(); } break; case MSG_STATUSTEXT: CHECK_PAYLOAD_SIZE(STATUSTEXT); send_statustext(chan); break; #if AP_LIMITS == ENABLED case MSG_LIMITS_STATUS: CHECK_PAYLOAD_SIZE(LIMITS_STATUS); send_limits_status(chan); break; #endif case MSG_AHRS: CHECK_PAYLOAD_SIZE(AHRS); send_ahrs(chan); break; case MSG_SIMSTATE: #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL CHECK_PAYLOAD_SIZE(SIMSTATE); send_simstate(chan); #endif break; case MSG_HWSTATUS: CHECK_PAYLOAD_SIZE(HWSTATUS); send_hwstatus(chan); break; case MSG_RETRY_DEFERRED: break; // just here to prevent a warning } return true; } #define MAX_DEFERRED_MESSAGES MSG_RETRY_DEFERRED static struct mavlink_queue { enum ap_message deferred_messages[MAX_DEFERRED_MESSAGES]; uint8_t next_deferred_message; uint8_t num_deferred_messages; } mavlink_queue[2]; // send a message using mavlink static void mavlink_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops) { uint8_t i, nextid; struct mavlink_queue *q = &mavlink_queue[(uint8_t)chan]; // see if we can send the deferred messages, if any while (q->num_deferred_messages != 0) { if (!mavlink_try_send_message(chan, q->deferred_messages[q->next_deferred_message], packet_drops)) { break; } q->next_deferred_message++; if (q->next_deferred_message == MAX_DEFERRED_MESSAGES) { q->next_deferred_message = 0; } q->num_deferred_messages--; } if (id == MSG_RETRY_DEFERRED) { return; } // this message id might already be deferred for (i=0, nextid = q->next_deferred_message; i < q->num_deferred_messages; i++) { if (q->deferred_messages[nextid] == id) { // its already deferred, discard return; } nextid++; if (nextid == MAX_DEFERRED_MESSAGES) { nextid = 0; } } if (q->num_deferred_messages != 0 || !mavlink_try_send_message(chan, id, packet_drops)) { // can't send it now, so defer it if (q->num_deferred_messages == MAX_DEFERRED_MESSAGES) { // the defer buffer is full, discard return; } nextid = q->next_deferred_message + q->num_deferred_messages; if (nextid >= MAX_DEFERRED_MESSAGES) { nextid -= MAX_DEFERRED_MESSAGES; } q->deferred_messages[nextid] = id; q->num_deferred_messages++; } } void mavlink_send_text(mavlink_channel_t chan, gcs_severity severity, const char *str) { if (telemetry_delayed(chan)) { return; } if (severity == SEVERITY_LOW) { // send via the deferred queuing system pending_status.severity = (uint8_t)severity; strncpy((char *)pending_status.text, str, sizeof(pending_status.text)); mavlink_send_message(chan, MSG_STATUSTEXT, 0); } else { // send immediately mavlink_msg_statustext_send( chan, severity, str); } } const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Raw sensor stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRateRawSensors, 0), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Extended status stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRateExtendedStatus, 0), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: RC Channel stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRateRCChannels, 0), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Raw Control stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRateRawController, 0), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Position stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRatePosition, 0), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Extra data type 1 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRateExtra1, 0), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Extra data type 2 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRateExtra2, 0), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Extra data type 3 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRateExtra3, 0), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Parameter stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRateParams, 0), AP_GROUPEND }; GCS_MAVLINK::GCS_MAVLINK() : packet_drops(0), waypoint_send_timeout(1000), // 1 second waypoint_receive_timeout(1000) // 1 second { } void GCS_MAVLINK::init(AP_HAL::UARTDriver* port) { GCS_Class::init(port); if (port == hal.uartA) { mavlink_comm_0_port = port; chan = MAVLINK_COMM_0; }else{ mavlink_comm_1_port = port; chan = MAVLINK_COMM_1; } _queued_parameter = NULL; reset_cli_timeout(); } void GCS_MAVLINK::update(void) { // receive new packets mavlink_message_t msg; mavlink_status_t status; status.packet_rx_drop_count = 0; // process received bytes uint16_t nbytes = comm_get_available(chan); for (uint16_t i=0; i waypoint_timelast_request + 500 + (stream_slowdown*20)) { waypoint_timelast_request = tnow; send_message(MSG_NEXT_WAYPOINT); } // stop waypoint sending if timeout if (waypoint_sending && (tnow - waypoint_timelast_send) > waypoint_send_timeout) { waypoint_sending = false; } // stop waypoint receiving if timeout if (waypoint_receiving && (tnow - waypoint_timelast_receive) > waypoint_receive_timeout) { waypoint_receiving = false; } } // see if we should send a stream now. Called at 50Hz bool GCS_MAVLINK::stream_trigger(enum streams stream_num) { uint8_t rate; switch (stream_num) { case STREAM_RAW_SENSORS: rate = streamRateRawSensors.get(); break; case STREAM_EXTENDED_STATUS: rate = streamRateExtendedStatus.get(); break; case STREAM_RC_CHANNELS: rate = streamRateRCChannels.get(); break; case STREAM_RAW_CONTROLLER: rate = streamRateRawController.get(); break; case STREAM_POSITION: rate = streamRatePosition.get(); break; case STREAM_EXTRA1: rate = streamRateExtra1.get(); break; case STREAM_EXTRA2: rate = streamRateExtra2.get(); break; case STREAM_EXTRA3: rate = streamRateExtra3.get(); break; case STREAM_PARAMS: rate = streamRateParams.get(); break; default: rate = 0; } if (rate == 0) { return false; } if (stream_ticks[stream_num] == 0) { // we're triggering now, setup the next trigger point if (rate > 50) { rate = 50; } stream_ticks[stream_num] = (50 / rate) + stream_slowdown; return true; } // count down at 50Hz stream_ticks[stream_num]--; return false; } void GCS_MAVLINK::data_stream_send(void) { if (waypoint_receiving || waypoint_sending) { // don't interfere with mission transfer return; } gcs_out_of_time = false; if (_queued_parameter != NULL) { if (streamRateParams.get() <= 0) { streamRateParams.set(50); } if (stream_trigger(STREAM_PARAMS)) { send_message(MSG_NEXT_PARAM); } // don't send anything else at the same time as parameters return; } if (gcs_out_of_time) return; if (in_mavlink_delay) { // don't send any other stream types while in the delay callback return; } if (stream_trigger(STREAM_RAW_SENSORS)) { send_message(MSG_RAW_IMU1); send_message(MSG_RAW_IMU2); send_message(MSG_RAW_IMU3); //cliSerial->printf("mav1 %d\n", (int)streamRateRawSensors.get()); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTENDED_STATUS)) { send_message(MSG_EXTENDED_STATUS1); send_message(MSG_EXTENDED_STATUS2); send_message(MSG_CURRENT_WAYPOINT); send_message(MSG_GPS_RAW); send_message(MSG_NAV_CONTROLLER_OUTPUT); send_message(MSG_LIMITS_STATUS); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_POSITION)) { send_message(MSG_LOCATION); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); //cliSerial->printf("mav4 %d\n", (int)streamRateRawController.get()); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_RADIO_OUT); send_message(MSG_RADIO_IN); //cliSerial->printf("mav5 %d\n", (int)streamRateRCChannels.get()); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA1)) { send_message(MSG_ATTITUDE); send_message(MSG_SIMSTATE); //cliSerial->printf("mav6 %d\n", (int)streamRateExtra1.get()); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA2)) { send_message(MSG_VFR_HUD); //cliSerial->printf("mav7 %d\n", (int)streamRateExtra2.get()); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA3)) { send_message(MSG_AHRS); send_message(MSG_HWSTATUS); } } void GCS_MAVLINK::send_message(enum ap_message id) { mavlink_send_message(chan,id, packet_drops); } void GCS_MAVLINK::send_text_P(gcs_severity severity, const prog_char_t *str) { mavlink_statustext_t m; uint8_t i; for (i=0; imsgid) { case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: //66 { // decode mavlink_request_data_stream_t packet; mavlink_msg_request_data_stream_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; int16_t freq = 0; // packet frequency if (packet.start_stop == 0) freq = 0; // stop sending else if (packet.start_stop == 1) freq = packet.req_message_rate; // start sending else break; switch(packet.req_stream_id) { case MAV_DATA_STREAM_ALL: streamRateRawSensors = freq; streamRateExtendedStatus = freq; streamRateRCChannels = freq; streamRateRawController = freq; streamRatePosition = freq; streamRateExtra1 = freq; streamRateExtra2 = freq; //streamRateExtra3.set_and_save(freq); // We just do set and save on the last as it takes care of the whole group. streamRateExtra3 = freq; // Don't save!! break; case MAV_DATA_STREAM_RAW_SENSORS: streamRateRawSensors = freq; // We do not set and save this one so that if HIL is shut down incorrectly // we will not continue to broadcast raw sensor data at 50Hz. break; case MAV_DATA_STREAM_EXTENDED_STATUS: //streamRateExtendedStatus.set_and_save(freq); streamRateExtendedStatus = freq; break; case MAV_DATA_STREAM_RC_CHANNELS: streamRateRCChannels = freq; break; case MAV_DATA_STREAM_RAW_CONTROLLER: streamRateRawController = freq; break; //case MAV_DATA_STREAM_RAW_SENSOR_FUSION: // streamRateRawSensorFusion.set_and_save(freq); // break; case MAV_DATA_STREAM_POSITION: streamRatePosition = freq; break; case MAV_DATA_STREAM_EXTRA1: streamRateExtra1 = freq; break; case MAV_DATA_STREAM_EXTRA2: streamRateExtra2 = freq; break; case MAV_DATA_STREAM_EXTRA3: streamRateExtra3 = freq; break; default: break; } break; } case MAVLINK_MSG_ID_COMMAND_LONG: { // decode mavlink_command_long_t packet; mavlink_msg_command_long_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; uint8_t result = MAV_RESULT_UNSUPPORTED; // do command send_text_P(SEVERITY_LOW,PSTR("command received: ")); switch(packet.command) { case MAV_CMD_NAV_LOITER_UNLIM: set_mode(LOITER); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: set_mode(RTL); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_NAV_LAND: set_mode(LAND); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_MISSION_START: set_mode(AUTO); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_PREFLIGHT_CALIBRATION: if (packet.param1 == 1 || packet.param2 == 1 || packet.param3 == 1) { ins.init_accel(flash_leds); ahrs.set_trim(Vector3f(0,0,0)); // clear out saved trim } if (packet.param4 == 1) { trim_radio(); } if (packet.param5 == 1) { float trim_roll, trim_pitch; // this blocks AP_InertialSensor_UserInteractStream interact(hal.console); if(ins.calibrate_accel(flash_leds, &interact, trim_roll, trim_pitch)) { // reset ahrs's trim to suggested values from calibration routine ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); } } result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_COMPONENT_ARM_DISARM: if (packet.target_component == MAV_COMP_ID_SYSTEM_CONTROL) { if (packet.param1 == 1.0f) { init_arm_motors(); result = MAV_RESULT_ACCEPTED; } else if (packet.param1 == 0.0f) { init_disarm_motors(); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_UNSUPPORTED; } } else { result = MAV_RESULT_UNSUPPORTED; } break; case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: if (packet.param1 == 1) { reboot_apm(); result = MAV_RESULT_ACCEPTED; } break; default: result = MAV_RESULT_UNSUPPORTED; break; } mavlink_msg_command_ack_send( chan, packet.command, result); break; } case MAVLINK_MSG_ID_SET_MODE: //11 { // decode mavlink_set_mode_t packet; mavlink_msg_set_mode_decode(msg, &packet); if (!(packet.base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED)) { // we ignore base_mode as there is no sane way to map // from that bitmap to a APM flight mode. We rely on // custom_mode instead. break; } switch (packet.custom_mode) { case STABILIZE: case ACRO: case ALT_HOLD: case AUTO: case GUIDED: case LOITER: case RTL: case CIRCLE: case POSITION: case LAND: case OF_LOITER: set_mode(packet.custom_mode); break; } break; } /*case MAVLINK_MSG_ID_SET_NAV_MODE: * { * // decode * mavlink_set_nav_mode_t packet; * mavlink_msg_set_nav_mode_decode(msg, &packet); * // To set some flight modes we must first receive a "set nav mode" message and then a "set mode" message * mav_nav = packet.nav_mode; * break; * } */ case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: //43 { //send_text_P(SEVERITY_LOW,PSTR("waypoint request list")); // decode mavlink_mission_request_list_t packet; mavlink_msg_mission_request_list_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; // Start sending waypoints mavlink_msg_mission_count_send( chan,msg->sysid, msg->compid, g.command_total); // includes home waypoint_timelast_send = millis(); waypoint_sending = true; waypoint_receiving = false; waypoint_dest_sysid = msg->sysid; waypoint_dest_compid = msg->compid; break; } // XXX read a WP from EEPROM and send it to the GCS case MAVLINK_MSG_ID_MISSION_REQUEST: // 40 { //send_text_P(SEVERITY_LOW,PSTR("waypoint request")); // Check if sending waypiont //if (!waypoint_sending) break; // 5/10/11 - We are trying out relaxing the requirement that we be in waypoint sending mode to respond to a waypoint request. DEW // decode mavlink_mission_request_t packet; mavlink_msg_mission_request_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; // send waypoint tell_command = get_cmd_with_index(packet.seq); // set frame of waypoint uint8_t frame; if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) { frame = MAV_FRAME_GLOBAL_RELATIVE_ALT; // reference frame } else { frame = MAV_FRAME_GLOBAL; // reference frame } float param1 = 0, param2 = 0, param3 = 0, param4 = 0; // time that the mav should loiter in milliseconds uint8_t current = 0; // 1 (true), 0 (false) if (packet.seq == (uint16_t)g.command_index) current = 1; uint8_t autocontinue = 1; // 1 (true), 0 (false) float x = 0, y = 0, z = 0; if (tell_command.id < MAV_CMD_NAV_LAST) { // command needs scaling x = tell_command.lat/1.0e7f; // local (x), global (latitude) y = tell_command.lng/1.0e7f; // local (y), global (longitude) // ACM is processing alt inside each command. so we save and load raw values. - this is diffrent to APM z = tell_command.alt/1.0e2f; // local (z), global/relative (altitude) } // Switch to map APM command fields into MAVLink command fields switch (tell_command.id) { case MAV_CMD_NAV_LOITER_TURNS: case MAV_CMD_CONDITION_CHANGE_ALT: case MAV_CMD_DO_SET_HOME: param1 = tell_command.p1; break; case MAV_CMD_NAV_ROI: param1 = tell_command.p1; // MAV_ROI (aka roi mode) is held in wp's parameter but we actually do nothing with it because we only support pointing at a specific location provided by x,y and z parameters break; case MAV_CMD_CONDITION_YAW: param3 = tell_command.p1; param1 = tell_command.alt; param2 = tell_command.lat; param4 = tell_command.lng; break; case MAV_CMD_NAV_TAKEOFF: param1 = 0; break; case MAV_CMD_NAV_LOITER_TIME: param1 = tell_command.p1; // ACM loiter time is in 1 second increments break; case MAV_CMD_CONDITION_DELAY: case MAV_CMD_CONDITION_DISTANCE: param1 = tell_command.lat; break; case MAV_CMD_DO_JUMP: param2 = tell_command.lat; param1 = tell_command.p1; break; case MAV_CMD_DO_REPEAT_SERVO: param4 = tell_command.lng; case MAV_CMD_DO_REPEAT_RELAY: case MAV_CMD_DO_CHANGE_SPEED: param3 = tell_command.lat; param2 = tell_command.alt; param1 = tell_command.p1; break; case MAV_CMD_NAV_WAYPOINT: param1 = tell_command.p1; break; case MAV_CMD_DO_SET_PARAMETER: case MAV_CMD_DO_SET_RELAY: case MAV_CMD_DO_SET_SERVO: param2 = tell_command.alt; param1 = tell_command.p1; break; } mavlink_msg_mission_item_send(chan,msg->sysid, msg->compid, packet.seq, frame, tell_command.id, current, autocontinue, param1, param2, param3, param4, x, y, z); // update last waypoint comm stamp waypoint_timelast_send = millis(); break; } case MAVLINK_MSG_ID_MISSION_ACK: //47 { //send_text_P(SEVERITY_LOW,PSTR("waypoint ack")); // decode mavlink_mission_ack_t packet; mavlink_msg_mission_ack_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; // turn off waypoint send waypoint_sending = false; break; } case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: // 21 { // gcs_send_text_P(SEVERITY_LOW,PSTR("param request list")); // decode mavlink_param_request_list_t packet; mavlink_msg_param_request_list_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; // Start sending parameters - next call to ::update will kick the first one out _queued_parameter = AP_Param::first(&_queued_parameter_token, &_queued_parameter_type); _queued_parameter_index = 0; _queued_parameter_count = _count_parameters(); break; } case MAVLINK_MSG_ID_PARAM_REQUEST_READ: { // decode mavlink_param_request_read_t packet; mavlink_msg_param_request_read_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; enum ap_var_type p_type; AP_Param *vp; char param_name[AP_MAX_NAME_SIZE+1]; if (packet.param_index != -1) { AP_Param::ParamToken token; vp = AP_Param::find_by_index(packet.param_index, &p_type, &token); if (vp == NULL) { gcs_send_text_fmt(PSTR("Unknown parameter index %d"), packet.param_index); break; } vp->copy_name_token(&token, param_name, AP_MAX_NAME_SIZE, true); param_name[AP_MAX_NAME_SIZE] = 0; } else { strncpy(param_name, packet.param_id, AP_MAX_NAME_SIZE); param_name[AP_MAX_NAME_SIZE] = 0; vp = AP_Param::find(param_name, &p_type); if (vp == NULL) { gcs_send_text_fmt(PSTR("Unknown parameter %.16s"), packet.param_id); break; } } float value = vp->cast_to_float(p_type); mavlink_msg_param_value_send( chan, param_name, value, mav_var_type(p_type), _count_parameters(), packet.param_index); break; } case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: // 45 { //send_text_P(SEVERITY_LOW,PSTR("waypoint clear all")); // decode mavlink_mission_clear_all_t packet; mavlink_msg_mission_clear_all_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; // clear all waypoints uint8_t type = 0; // ok (0), error(1) g.command_total.set_and_save(1); // send acknowledgement 3 times to makes sure it is received for (int16_t i=0; i<3; i++) mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, type); break; } case MAVLINK_MSG_ID_MISSION_SET_CURRENT: // 41 { //send_text_P(SEVERITY_LOW,PSTR("waypoint set current")); // decode mavlink_mission_set_current_t packet; mavlink_msg_mission_set_current_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; // set current command change_command(packet.seq); mavlink_msg_mission_current_send(chan, g.command_index); break; } case MAVLINK_MSG_ID_MISSION_COUNT: // 44 { //send_text_P(SEVERITY_LOW,PSTR("waypoint count")); // decode mavlink_mission_count_t packet; mavlink_msg_mission_count_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; // start waypoint receiving if (packet.count > MAX_WAYPOINTS) { packet.count = MAX_WAYPOINTS; } g.command_total.set_and_save(packet.count); waypoint_timelast_receive = millis(); waypoint_receiving = true; waypoint_sending = false; waypoint_request_i = 0; waypoint_timelast_request = 0; break; } #ifdef MAVLINK_MSG_ID_SET_MAG_OFFSETS case MAVLINK_MSG_ID_SET_MAG_OFFSETS: { mavlink_set_mag_offsets_t packet; mavlink_msg_set_mag_offsets_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; compass.set_offsets(Vector3f(packet.mag_ofs_x, packet.mag_ofs_y, packet.mag_ofs_z)); break; } #endif // XXX receive a WP from GCS and store in EEPROM case MAVLINK_MSG_ID_MISSION_ITEM: //39 { // decode mavlink_mission_item_t packet; mavlink_msg_mission_item_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; // defaults tell_command.id = packet.command; /* * switch (packet.frame){ * * case MAV_FRAME_MISSION: * case MAV_FRAME_GLOBAL: * { * tell_command.lat = 1.0e7*packet.x; // in as DD converted to * t7 * tell_command.lng = 1.0e7*packet.y; // in as DD converted to * t7 * tell_command.alt = packet.z*1.0e2; // in as m converted to cm * tell_command.options = 0; // absolute altitude * break; * } * * case MAV_FRAME_LOCAL: // local (relative to home position) * { * tell_command.lat = 1.0e7*ToDeg(packet.x/ * (radius_of_earth*cosf(ToRad(home.lat/1.0e7)))) + home.lat; * tell_command.lng = 1.0e7*ToDeg(packet.y/radius_of_earth) + home.lng; * tell_command.alt = packet.z*1.0e2; * tell_command.options = MASK_OPTIONS_RELATIVE_ALT; * break; * } * //case MAV_FRAME_GLOBAL_RELATIVE_ALT: // absolute lat/lng, relative altitude * default: * { * tell_command.lat = 1.0e7 * packet.x; // in as DD converted to * t7 * tell_command.lng = 1.0e7 * packet.y; // in as DD converted to * t7 * tell_command.alt = packet.z * 1.0e2; * tell_command.options = MASK_OPTIONS_RELATIVE_ALT; // store altitude relative!! Always!! * break; * } * } */ // we only are supporting Abs position, relative Alt tell_command.lat = 1.0e7f * packet.x; // in as DD converted to * t7 tell_command.lng = 1.0e7f * packet.y; // in as DD converted to * t7 tell_command.alt = packet.z * 1.0e2f; tell_command.options = 1; // store altitude relative to home alt!! Always!! switch (tell_command.id) { // Switch to map APM command fields into MAVLink command fields case MAV_CMD_NAV_LOITER_TURNS: case MAV_CMD_DO_SET_HOME: tell_command.p1 = packet.param1; break; case MAV_CMD_NAV_ROI: tell_command.p1 = packet.param1; // MAV_ROI (aka roi mode) is held in wp's parameter but we actually do nothing with it because we only support pointing at a specific location provided by x,y and z parameters break; case MAV_CMD_CONDITION_YAW: tell_command.p1 = packet.param3; tell_command.alt = packet.param1; tell_command.lat = packet.param2; tell_command.lng = packet.param4; break; case MAV_CMD_NAV_TAKEOFF: tell_command.p1 = 0; break; case MAV_CMD_CONDITION_CHANGE_ALT: tell_command.p1 = packet.param1 * 100; break; case MAV_CMD_NAV_LOITER_TIME: tell_command.p1 = packet.param1; // APM loiter time is in ten second increments break; case MAV_CMD_CONDITION_DELAY: case MAV_CMD_CONDITION_DISTANCE: tell_command.lat = packet.param1; break; case MAV_CMD_DO_JUMP: tell_command.lat = packet.param2; tell_command.p1 = packet.param1; break; case MAV_CMD_DO_REPEAT_SERVO: tell_command.lng = packet.param4; case MAV_CMD_DO_REPEAT_RELAY: case MAV_CMD_DO_CHANGE_SPEED: tell_command.lat = packet.param3; tell_command.alt = packet.param2; tell_command.p1 = packet.param1; break; case MAV_CMD_NAV_WAYPOINT: tell_command.p1 = packet.param1; break; case MAV_CMD_DO_SET_PARAMETER: case MAV_CMD_DO_SET_RELAY: case MAV_CMD_DO_SET_SERVO: tell_command.alt = packet.param2; tell_command.p1 = packet.param1; break; } if(packet.current == 2) { //current = 2 is a flag to tell us this is a "guided mode" waypoint and not for the mission guided_WP = tell_command; // add home alt if needed if (guided_WP.options & MASK_OPTIONS_RELATIVE_ALT) { guided_WP.alt += home.alt; } set_mode(GUIDED); // verify we recevied the command mavlink_msg_mission_ack_send( chan, msg->sysid, msg->compid, 0); } else if(packet.current == 3) { //current = 3 is a flag to tell us this is a alt change only // add home alt if needed if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) { tell_command.alt += home.alt; } set_new_altitude(tell_command.alt); // verify we recevied the command mavlink_msg_mission_ack_send( chan, msg->sysid, msg->compid, 0); } else { // Check if receiving waypoints (mission upload expected) if (!waypoint_receiving) break; //cliSerial->printf("req: %d, seq: %d, total: %d\n", waypoint_request_i,packet.seq, g.command_total.get()); // check if this is the requested waypoint if (packet.seq != waypoint_request_i) break; if(packet.seq != 0) set_cmd_with_index(tell_command, packet.seq); // update waypoint receiving state machine waypoint_timelast_receive = millis(); waypoint_timelast_request = 0; waypoint_request_i++; if (waypoint_request_i == (uint16_t)g.command_total) { uint8_t type = 0; // ok (0), error(1) mavlink_msg_mission_ack_send( chan, msg->sysid, msg->compid, type); send_text_P(SEVERITY_LOW,PSTR("flight plan received")); waypoint_receiving = false; // XXX ignores waypoint radius for individual waypoints, can // only set WP_RADIUS parameter } } break; } case MAVLINK_MSG_ID_PARAM_SET: // 23 { AP_Param *vp; enum ap_var_type var_type; // decode mavlink_param_set_t packet; mavlink_msg_param_set_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; // set parameter char key[AP_MAX_NAME_SIZE+1]; strncpy(key, (char *)packet.param_id, AP_MAX_NAME_SIZE); key[AP_MAX_NAME_SIZE] = 0; // find the requested parameter vp = AP_Param::find(key, &var_type); if ((NULL != vp) && // exists !isnan(packet.param_value) && // not nan !isinf(packet.param_value)) { // not inf // add a small amount before casting parameter values // from float to integer to avoid truncating to the // next lower integer value. float rounding_addition = 0.01; // handle variables with standard type IDs if (var_type == AP_PARAM_FLOAT) { ((AP_Float *)vp)->set_and_save(packet.param_value); } else if (var_type == AP_PARAM_INT32) { #if LOGGING_ENABLED == ENABLED if (g.log_bitmask != 0) { Log_Write_Data(DATA_MAVLINK_FLOAT, ((AP_Int32 *)vp)->get()); } #endif if (packet.param_value < 0) rounding_addition = -rounding_addition; float v = packet.param_value+rounding_addition; v = constrain(v, -2147483648.0, 2147483647.0); ((AP_Int32 *)vp)->set_and_save(v); } else if (var_type == AP_PARAM_INT16) { #if LOGGING_ENABLED == ENABLED if (g.log_bitmask != 0) { Log_Write_Data(DATA_MAVLINK_INT16, (int16_t)((AP_Int16 *)vp)->get()); } #endif if (packet.param_value < 0) rounding_addition = -rounding_addition; float v = packet.param_value+rounding_addition; v = constrain(v, -32768, 32767); ((AP_Int16 *)vp)->set_and_save(v); } else if (var_type == AP_PARAM_INT8) { #if LOGGING_ENABLED == ENABLED if (g.log_bitmask != 0) { Log_Write_Data(DATA_MAVLINK_INT8, (int8_t)((AP_Int8 *)vp)->get()); } #endif if (packet.param_value < 0) rounding_addition = -rounding_addition; float v = packet.param_value+rounding_addition; v = constrain(v, -128, 127); ((AP_Int8 *)vp)->set_and_save(v); } else { // we don't support mavlink set on this parameter break; } // Report back the new value if we accepted the change // we send the value we actually set, which could be // different from the value sent, in case someone sent // a fractional value to an integer type mavlink_msg_param_value_send( chan, key, vp->cast_to_float(var_type), mav_var_type(var_type), _count_parameters(), -1); // XXX we don't actually know what its index is... } break; } // end case case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: //70 { // allow override of RC channel values for HIL // or for complete GCS control of switch position // and RC PWM values. if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs mavlink_rc_channels_override_t packet; int16_t v[8]; mavlink_msg_rc_channels_override_decode(msg, &packet); if (mavlink_check_target(packet.target_system,packet.target_component)) break; v[0] = packet.chan1_raw; v[1] = packet.chan2_raw; v[2] = packet.chan3_raw; v[3] = packet.chan4_raw; v[4] = packet.chan5_raw; v[5] = packet.chan6_raw; v[6] = packet.chan7_raw; v[7] = packet.chan8_raw; hal.rcin->set_overrides(v, 8); break; } #if HIL_MODE != HIL_MODE_DISABLED case MAVLINK_MSG_ID_HIL_STATE: { mavlink_hil_state_t packet; mavlink_msg_hil_state_decode(msg, &packet); float vel = pythagorous2(packet.vx, packet.vy); float cog = wrap_360(ToDeg(atan2f(packet.vx, packet.vy)) * 100); // set gps hil sensor g_gps->setHIL(packet.time_usec/1000, packet.lat*1.0e-7, packet.lon*1.0e-7, packet.alt*1.0e-3, vel*1.0e-2, cog*1.0e-2, 0, 10); if (gps_base_alt == 0) { gps_base_alt = g_gps->altitude; } current_loc.lng = g_gps->longitude; current_loc.lat = g_gps->latitude; current_loc.alt = g_gps->altitude - gps_base_alt; if (!ap.home_is_set) { init_home(); } // rad/sec Vector3f gyros; gyros.x = packet.rollspeed; gyros.y = packet.pitchspeed; gyros.z = packet.yawspeed; // m/s/s Vector3f accels; accels.x = packet.xacc * (GRAVITY_MSS/1000.0); accels.y = packet.yacc * (GRAVITY_MSS/1000.0); accels.z = packet.zacc * (GRAVITY_MSS/1000.0); ins.set_gyro(gyros); ins.set_accel(accels); // approximate a barometer float y; const float Temp = 312; y = (packet.alt - 584000.0) / 29271.267; y /= (Temp / 10.0) + 273.15; y = 1.0/exp(y); y *= 95446.0; barometer.setHIL(Temp, y); #if HIL_MODE == HIL_MODE_ATTITUDE // set AHRS hil sensor ahrs.setHil(packet.roll,packet.pitch,packet.yaw,packet.rollspeed, packet.pitchspeed,packet.yawspeed); #endif break; } #endif // HIL_MODE != HIL_MODE_DISABLED /* * case MAVLINK_MSG_ID_HEARTBEAT: * { * // We keep track of the last time we received a heartbeat from our GCS for failsafe purposes * if(msg->sysid != g.sysid_my_gcs) break; * rc_override_fs_timer = millis(); * break; * } * * #if HIL_MODE != HIL_MODE_DISABLED * // This is used both as a sensor and to pass the location * // in HIL_ATTITUDE mode. * case MAVLINK_MSG_ID_GPS_RAW: * { * // decode * mavlink_gps_raw_t packet; * mavlink_msg_gps_raw_decode(msg, &packet); * * // set gps hil sensor * g_gps->setHIL(packet.usec/1000,packet.lat,packet.lon,packet.alt, * packet.v,packet.hdg,0,0); * break; * } * #endif */ #if HIL_MODE == HIL_MODE_SENSORS case MAVLINK_MSG_ID_RAW_IMU: // 28 { // decode mavlink_raw_imu_t packet; mavlink_msg_raw_imu_decode(msg, &packet); // set imu hil sensors // TODO: check scaling for temp/absPress float temp = 70; float absPress = 1; // cliSerial->printf_P(PSTR("accel:\t%d\t%d\t%d\n"), packet.xacc, packet.yacc, packet.zacc); // cliSerial->printf_P(PSTR("gyro:\t%d\t%d\t%d\n"), packet.xgyro, packet.ygyro, packet.zgyro); // rad/sec Vector3f gyros; gyros.x = (float)packet.xgyro / 1000.0; gyros.y = (float)packet.ygyro / 1000.0; gyros.z = (float)packet.zgyro / 1000.0; // m/s/s Vector3f accels; accels.x = packet.xacc * (GRAVITY_MSS/1000.0); accels.y = packet.yacc * (GRAVITY_MSS/1000.0); accels.z = packet.zacc * (GRAVITY_MSS/1000.0); ins.set_gyro(gyros); ins.set_accel(accels); compass.setHIL(packet.xmag,packet.ymag,packet.zmag); break; } case MAVLINK_MSG_ID_RAW_PRESSURE: //29 { // decode mavlink_raw_pressure_t packet; mavlink_msg_raw_pressure_decode(msg, &packet); // set pressure hil sensor // TODO: check scaling float temp = 70; barometer.setHIL(temp,packet.press_diff1); break; } #endif // HIL_MODE #if CAMERA == ENABLED case MAVLINK_MSG_ID_DIGICAM_CONFIGURE: { camera.configure_msg(msg); break; } case MAVLINK_MSG_ID_DIGICAM_CONTROL: { camera.control_msg(msg); break; } #endif // CAMERA == ENABLED #if MOUNT == ENABLED case MAVLINK_MSG_ID_MOUNT_CONFIGURE: { camera_mount.configure_msg(msg); break; } case MAVLINK_MSG_ID_MOUNT_CONTROL: { camera_mount.control_msg(msg); break; } case MAVLINK_MSG_ID_MOUNT_STATUS: { camera_mount.status_msg(msg); break; } #endif // MOUNT == ENABLED case MAVLINK_MSG_ID_RADIO: { mavlink_radio_t packet; mavlink_msg_radio_decode(msg, &packet); // use the state of the transmit buffer in the radio to // control the stream rate, giving us adaptive software // flow control if (packet.txbuf < 20 && stream_slowdown < 100) { // we are very low on space - slow down a lot stream_slowdown += 3; } else if (packet.txbuf < 50 && stream_slowdown < 100) { // we are a bit low on space, slow down slightly stream_slowdown += 1; } else if (packet.txbuf > 95 && stream_slowdown > 10) { // the buffer has plenty of space, speed up a lot stream_slowdown -= 2; } else if (packet.txbuf > 90 && stream_slowdown != 0) { // the buffer has enough space, speed up a bit stream_slowdown--; } break; } #if AP_LIMITS == ENABLED // receive an AP_Limits fence point from GCS and store in EEPROM // receive a fence point from GCS and store in EEPROM case MAVLINK_MSG_ID_FENCE_POINT: { mavlink_fence_point_t packet; mavlink_msg_fence_point_decode(msg, &packet); if (packet.count != geofence_limit.fence_total()) { send_text_P(SEVERITY_LOW,PSTR("bad fence point")); } else { Vector2l point; point.x = packet.lat*1.0e7f; point.y = packet.lng*1.0e7f; geofence_limit.set_fence_point_with_index(point, packet.idx); } break; } // send a fence point to GCS case MAVLINK_MSG_ID_FENCE_FETCH_POINT: { mavlink_fence_fetch_point_t packet; mavlink_msg_fence_fetch_point_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) break; if (packet.idx >= geofence_limit.fence_total()) { send_text_P(SEVERITY_LOW,PSTR("bad fence point")); } else { Vector2l point = geofence_limit.get_fence_point_with_index(packet.idx); mavlink_msg_fence_point_send(chan, 0, 0, packet.idx, geofence_limit.fence_total(), point.x*1.0e-7f, point.y*1.0e-7f); } break; } #endif // AP_LIMITS ENABLED } // end switch } // end handle mavlink uint16_t GCS_MAVLINK::_count_parameters() { // if we haven't cached the parameter count yet... if (0 == _parameter_count) { AP_Param *vp; AP_Param::ParamToken token; vp = AP_Param::first(&token, NULL); do { _parameter_count++; } while (NULL != (vp = AP_Param::next_scalar(&token, NULL))); } return _parameter_count; } /** * queued_param_send - Send the next pending parameter, called from deferred message * handling code */ void GCS_MAVLINK::queued_param_send() { // Check to see if we are sending parameters if (NULL == _queued_parameter) return; AP_Param *vp; float value; // copy the current parameter and prepare to move to the next vp = _queued_parameter; // if the parameter can be cast to float, report it here and break out of the loop value = vp->cast_to_float(_queued_parameter_type); char param_name[AP_MAX_NAME_SIZE]; vp->copy_name_token(&_queued_parameter_token, param_name, sizeof(param_name), true); mavlink_msg_param_value_send( chan, param_name, value, mav_var_type(_queued_parameter_type), _queued_parameter_count, _queued_parameter_index); _queued_parameter = AP_Param::next_scalar(&_queued_parameter_token, &_queued_parameter_type); _queued_parameter_index++; } /** * queued_waypoint_send - Send the next pending waypoint, called from deferred message * handling code */ void GCS_MAVLINK::queued_waypoint_send() { if (waypoint_receiving && waypoint_request_i < (unsigned)g.command_total) { mavlink_msg_mission_request_send( chan, waypoint_dest_sysid, waypoint_dest_compid, waypoint_request_i); } } void GCS_MAVLINK::reset_cli_timeout() { _cli_timeout = millis(); } /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ static void mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs0.initialised) return; in_mavlink_delay = true; uint32_t tnow = millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs_send_heartbeat(); gcs_send_message(MSG_EXTENDED_STATUS1); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs_check_input(); gcs_data_stream_send(); gcs_send_deferred(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM...")); } #if USB_MUX_PIN > 0 check_usb_mux(); #endif in_mavlink_delay = false; } /* * send a message on both GCS links */ static void gcs_send_message(enum ap_message id) { gcs0.send_message(id); if (gcs3.initialised) { gcs3.send_message(id); } } /* * send data streams in the given rate range on both links */ static void gcs_data_stream_send(void) { gcs0.data_stream_send(); if (gcs3.initialised) { gcs3.data_stream_send(); } } /* * look for incoming commands on the GCS links */ static void gcs_check_input(void) { gcs0.update(); if (gcs3.initialised) { gcs3.update(); } } static void gcs_send_text_P(gcs_severity severity, const prog_char_t *str) { gcs0.send_text_P(severity, str); if (gcs3.initialised) { gcs3.send_text_P(severity, str); } } /* * send a low priority formatted message to the GCS * only one fits in the queue, so if you send more than one before the * last one gets into the serial buffer then the old one will be lost */ static void gcs_send_text_fmt(const prog_char_t *fmt, ...) { va_list arg_list; pending_status.severity = (uint8_t)SEVERITY_LOW; va_start(arg_list, fmt); hal.util->vsnprintf_P((char *)pending_status.text, sizeof(pending_status.text), fmt, arg_list); va_end(arg_list); mavlink_send_message(MAVLINK_COMM_0, MSG_STATUSTEXT, 0); if (gcs3.initialised) { mavlink_send_message(MAVLINK_COMM_1, MSG_STATUSTEXT, 0); } }