#include // uncomment this to force the optimisation of this code, note that // this makes debugging harder #if CONFIG_HAL_BOARD == HAL_BOARD_SITL || CONFIG_HAL_BOARD == HAL_BOARD_LINUX #pragma GCC optimize("O0") #else #pragma GCC optimize("O2") #endif #include "SoloGimbalEKF.h" #if HAL_SOLO_GIMBAL_ENABLED #include #include #include #include #include extern const AP_HAL::HAL& hal; // Define tuning parameters const AP_Param::GroupInfo SoloGimbalEKF::var_info[] = { AP_GROUPEND }; // Hash define constants #define GYRO_BIAS_LIMIT 0.349066f // maximum allowed gyro bias (rad/sec) // constructor SoloGimbalEKF::SoloGimbalEKF() : states(), state(*reinterpret_cast(&states)) { AP_Param::setup_object_defaults(this, var_info); reset(); } // complete reset void SoloGimbalEKF::reset() { ZERO_FARRAY(states); memset((void *)&gSense,0,sizeof(gSense)); memset(&Cov,0,sizeof(Cov)); TiltCorrectionSquared = 0; StartTime_ms = 0; FiltInit = false; lastMagUpdate = 0; dtIMU = 0; innovationIncrement = 0; lastInnovation = 0; } // run a 9-state EKF used to calculate orientation void SoloGimbalEKF::RunEKF(float delta_time, const Vector3f &delta_angles, const Vector3f &delta_velocity, const Vector3f &joint_angles) { imuSampleTime_ms = AP_HAL::millis(); dtIMU = delta_time; // initialise variables and constants if (!FiltInit) { // Note: the start time is initialised to 0 in the constructor if (StartTime_ms == 0) { StartTime_ms = imuSampleTime_ms; } // Set data to pre-initialsation defaults FiltInit = false; newDataMag = false; YawAligned = false; memset((void *)&state, 0, sizeof(state)); state.quat[0] = 1.0f; bool main_ekf_healthy = false; nav_filter_status main_ekf_status; const auto &_ahrs = AP::ahrs(); if (_ahrs.get_filter_status(main_ekf_status)) { if (main_ekf_status.flags.attitude) { main_ekf_healthy = true; } } // Wait for gimbal to stabilise to body fixed position for a few seconds before starting small EKF // Also wait for navigation EKF to be healthy beasue we are using the velocity output data // This prevents jerky gimbal motion from degrading the EKF initial state estimates if (imuSampleTime_ms - StartTime_ms < 5000 || !main_ekf_healthy) { return; } Quaternion ned_to_vehicle_quat; ned_to_vehicle_quat.from_rotation_matrix(_ahrs.get_rotation_body_to_ned()); Quaternion vehicle_to_gimbal_quat; vehicle_to_gimbal_quat.from_vector312(joint_angles.x,joint_angles.y,joint_angles.z); // calculate initial orientation state.quat = ned_to_vehicle_quat * vehicle_to_gimbal_quat; const float Sigma_velNED = 0.5f; // 1 sigma uncertainty in horizontal velocity components const float Sigma_dAngBias = 0.002f*dtIMU; // 1 Sigma uncertainty in delta angle bias (rad) const float Sigma_angErr = 0.1f; // 1 Sigma uncertainty in angular misalignment (rad) for (uint8_t i=0; i <= 2; i++) Cov[i][i] = sq(Sigma_angErr); for (uint8_t i=3; i <= 5; i++) Cov[i][i] = sq(Sigma_velNED); for (uint8_t i=6; i <= 8; i++) Cov[i][i] = sq(Sigma_dAngBias); FiltInit = true; hal.console->printf("\nSoloGimbalEKF Alignment Started\n"); // Don't run the filter in this timestep because we have already used the delta velocity data to set an initial orientation return; } // We are using IMU data and joint angles from the gimbal gSense.gPsi = joint_angles.z; // yaw gSense.gPhi = joint_angles.x; // roll gSense.gTheta = joint_angles.y; // pitch cosPhi = cosf(gSense.gPhi); cosTheta = cosf(gSense.gTheta); sinPhi = sinf(gSense.gPhi); sinTheta = sinf(gSense.gTheta); sinPsi = sinf(gSense.gPsi); cosPsi = cosf(gSense.gPsi); gSense.delAng = delta_angles; gSense.delVel = delta_velocity; // predict states predictStates(); // predict the covariance predictCovariance(); // fuse SoloGimbalEKF velocity data fuseVelocity(); // Align the heading once there has been enough time for the filter to settle and the tilt corrections have dropped below a threshold // Force it to align if too much time has lapsed if (((((imuSampleTime_ms - StartTime_ms) > 8000 && TiltCorrectionSquared < sq(1e-4f)) || (imuSampleTime_ms - StartTime_ms) > 30000)) && !YawAligned) { //calculate the initial heading using magnetometer, estimated tilt and declination alignHeading(); YawAligned = true; hal.console->printf("\nSoloGimbalEKF Alignment Completed\n"); } // Fuse magnetometer data if we have new measurements and an aligned heading readMagData(); if (newDataMag && YawAligned) { fuseCompass(); newDataMag = false; } } // state prediction void SoloGimbalEKF::predictStates() { static Vector3f gimDelAngCorrected; static Vector3f gimDelAngPrev; // NED gravity vector m/s^2 const Vector3f gravityNED(0, 0, GRAVITY_MSS); // apply corrections for bias and coning errors // % * - and + operators have been overloaded gimDelAngCorrected = gSense.delAng - state.delAngBias - (gimDelAngPrev % gimDelAngCorrected) * 8.333333e-2f; gimDelAngPrev = gSense.delAng - state.delAngBias; // update the quaternions by rotating from the previous attitude through // the delta angle rotation quaternion state.quat.rotate(gimDelAngCorrected); // normalise the quaternions and update the quaternion states state.quat.normalize(); // calculate the sensor to NED cosine matrix state.quat.rotation_matrix(Tsn); // transform body delta velocities to delta velocities in the nav frame // * and + operators have been overloaded Vector3f delVelNav = Tsn*gSense.delVel + gravityNED*dtIMU; // sum delta velocities to get velocity state.velocity += delVelNav; state.delAngBias.x = constrain_float(state.delAngBias.x, -GYRO_BIAS_LIMIT*dtIMU,GYRO_BIAS_LIMIT*dtIMU); state.delAngBias.y = constrain_float(state.delAngBias.y, -GYRO_BIAS_LIMIT*dtIMU,GYRO_BIAS_LIMIT*dtIMU); state.delAngBias.z = constrain_float(state.delAngBias.z, -GYRO_BIAS_LIMIT*dtIMU,GYRO_BIAS_LIMIT*dtIMU); } // covariance prediction using optimised algebraic toolbox expressions // equivalent to P = F*P*transpose(P) + G*imu_errors*transpose(G) + // gyro_bias_state_noise void SoloGimbalEKF::predictCovariance() { float delAngBiasVariance = sq(dtIMU*5E-6f); if (YawAligned && !hal.util->get_soft_armed()) { delAngBiasVariance *= 4.0f; } float daxNoise = sq(dtIMU*0.0087f); float dayNoise = sq(dtIMU*0.0087f); float dazNoise = sq(dtIMU*0.0087f); float dvxNoise = sq(dtIMU*0.5f); float dvyNoise = sq(dtIMU*0.5f); float dvzNoise = sq(dtIMU*0.5f); float dvx = gSense.delVel.x; float dvy = gSense.delVel.y; float dvz = gSense.delVel.z; float dax = gSense.delAng.x; float day = gSense.delAng.y; float daz = gSense.delAng.z; float q0 = state.quat[0]; float q1 = state.quat[1]; float q2 = state.quat[2]; float q3 = state.quat[3]; float dax_b = state.delAngBias.x; float day_b = state.delAngBias.y; float daz_b = state.delAngBias.z; float t1365 = dax*0.5f; float t1366 = dax_b*0.5f; float t1367 = t1365-t1366; float t1368 = day*0.5f; float t1369 = day_b*0.5f; float t1370 = t1368-t1369; float t1371 = daz*0.5f; float t1372 = daz_b*0.5f; float t1373 = t1371-t1372; float t1374 = q2*t1367*0.5f; float t1375 = q1*t1370*0.5f; float t1376 = q0*t1373*0.5f; float t1377 = q2*0.5f; float t1378 = q3*t1367*0.5f; float t1379 = q1*t1373*0.5f; float t1380 = q1*0.5f; float t1381 = q0*t1367*0.5f; float t1382 = q3*t1370*0.5f; float t1383 = q0*0.5f; float t1384 = q2*t1370*0.5f; float t1385 = q3*t1373*0.5f; float t1386 = q0*t1370*0.5f; float t1387 = q3*0.5f; float t1388 = q1*t1367*0.5f; float t1389 = q2*t1373*0.5f; float t1390 = t1374+t1375+t1376-t1387; float t1391 = t1377+t1378+t1379-t1386; float t1392 = q2*t1391*2.0f; float t1393 = t1380+t1381+t1382-t1389; float t1394 = q1*t1393*2.0f; float t1395 = t1383+t1384+t1385-t1388; float t1396 = q0*t1395*2.0f; float t1403 = q3*t1390*2.0f; float t1397 = t1392+t1394+t1396-t1403; float t1398 = sq(q0); float t1399 = sq(q1); float t1400 = sq(q2); float t1401 = sq(q3); float t1402 = t1398+t1399+t1400+t1401; float t1404 = t1374+t1375-t1376+t1387; float t1405 = t1377-t1378+t1379+t1386; float t1406 = q1*t1405*2.0f; float t1407 = -t1380+t1381+t1382+t1389; float t1408 = q2*t1407*2.0f; float t1409 = t1383-t1384+t1385+t1388; float t1410 = q3*t1409*2.0f; float t1420 = q0*t1404*2.0f; float t1411 = t1406+t1408+t1410-t1420; float t1412 = -t1377+t1378+t1379+t1386; float t1413 = q0*t1412*2.0f; float t1414 = t1374-t1375+t1376+t1387; float t1415 = t1383+t1384-t1385+t1388; float t1416 = q2*t1415*2.0f; float t1417 = t1380-t1381+t1382+t1389; float t1418 = q3*t1417*2.0f; float t1421 = q1*t1414*2.0f; float t1419 = t1413+t1416+t1418-t1421; float t1422 = Cov[0][0]*t1397; float t1423 = Cov[1][0]*t1411; float t1429 = Cov[6][0]*t1402; float t1430 = Cov[2][0]*t1419; float t1424 = t1422+t1423-t1429-t1430; float t1425 = Cov[0][1]*t1397; float t1426 = Cov[1][1]*t1411; float t1427 = Cov[0][2]*t1397; float t1428 = Cov[1][2]*t1411; float t1434 = Cov[6][1]*t1402; float t1435 = Cov[2][1]*t1419; float t1431 = t1425+t1426-t1434-t1435; float t1442 = Cov[6][2]*t1402; float t1443 = Cov[2][2]*t1419; float t1432 = t1427+t1428-t1442-t1443; float t1433 = t1398+t1399-t1400-t1401; float t1436 = q0*q2*2.0f; float t1437 = q1*q3*2.0f; float t1438 = t1436+t1437; float t1439 = q0*q3*2.0f; float t1441 = q1*q2*2.0f; float t1440 = t1439-t1441; float t1444 = t1398-t1399+t1400-t1401; float t1445 = q0*q1*2.0f; float t1449 = q2*q3*2.0f; float t1446 = t1445-t1449; float t1447 = t1439+t1441; float t1448 = t1398-t1399-t1400+t1401; float t1450 = t1445+t1449; float t1451 = t1436-t1437; float t1452 = Cov[0][6]*t1397; float t1453 = Cov[1][6]*t1411; float t1628 = Cov[6][6]*t1402; float t1454 = t1452+t1453-t1628-Cov[2][6]*t1419; float t1455 = Cov[0][7]*t1397; float t1456 = Cov[1][7]*t1411; float t1629 = Cov[6][7]*t1402; float t1457 = t1455+t1456-t1629-Cov[2][7]*t1419; float t1458 = Cov[0][8]*t1397; float t1459 = Cov[1][8]*t1411; float t1630 = Cov[6][8]*t1402; float t1460 = t1458+t1459-t1630-Cov[2][8]*t1419; float t1461 = q0*t1390*2.0f; float t1462 = q1*t1391*2.0f; float t1463 = q3*t1395*2.0f; float t1473 = q2*t1393*2.0f; float t1464 = t1461+t1462+t1463-t1473; float t1465 = q0*t1409*2.0f; float t1466 = q2*t1405*2.0f; float t1467 = q3*t1404*2.0f; float t1474 = q1*t1407*2.0f; float t1468 = t1465+t1466+t1467-t1474; float t1469 = q1*t1415*2.0f; float t1470 = q2*t1414*2.0f; float t1471 = q3*t1412*2.0f; float t1475 = q0*t1417*2.0f; float t1472 = t1469+t1470+t1471-t1475; float t1476 = Cov[7][0]*t1402; float t1477 = Cov[0][0]*t1464; float t1486 = Cov[1][0]*t1468; float t1487 = Cov[2][0]*t1472; float t1478 = t1476+t1477-t1486-t1487; float t1479 = Cov[7][1]*t1402; float t1480 = Cov[0][1]*t1464; float t1492 = Cov[1][1]*t1468; float t1493 = Cov[2][1]*t1472; float t1481 = t1479+t1480-t1492-t1493; float t1482 = Cov[7][2]*t1402; float t1483 = Cov[0][2]*t1464; float t1498 = Cov[1][2]*t1468; float t1499 = Cov[2][2]*t1472; float t1484 = t1482+t1483-t1498-t1499; float t1485 = sq(t1402); float t1488 = q1*t1390*2.0f; float t1489 = q2*t1395*2.0f; float t1490 = q3*t1393*2.0f; float t1533 = q0*t1391*2.0f; float t1491 = t1488+t1489+t1490-t1533; float t1494 = q0*t1407*2.0f; float t1495 = q1*t1409*2.0f; float t1496 = q2*t1404*2.0f; float t1534 = q3*t1405*2.0f; float t1497 = t1494+t1495+t1496-t1534; float t1500 = q0*t1415*2.0f; float t1501 = q1*t1417*2.0f; float t1502 = q3*t1414*2.0f; float t1535 = q2*t1412*2.0f; float t1503 = t1500+t1501+t1502-t1535; float t1504 = dvy*t1433; float t1505 = dvx*t1440; float t1506 = t1504+t1505; float t1507 = dvx*t1438; float t1508 = dvy*t1438; float t1509 = dvz*t1440; float t1510 = t1508+t1509; float t1511 = dvx*t1444; float t1551 = dvy*t1447; float t1512 = t1511-t1551; float t1513 = dvz*t1444; float t1514 = dvy*t1446; float t1515 = t1513+t1514; float t1516 = dvx*t1446; float t1517 = dvz*t1447; float t1518 = t1516+t1517; float t1519 = dvx*t1448; float t1520 = dvz*t1451; float t1521 = t1519+t1520; float t1522 = dvy*t1448; float t1552 = dvz*t1450; float t1523 = t1522-t1552; float t1524 = dvx*t1450; float t1525 = dvy*t1451; float t1526 = t1524+t1525; float t1527 = Cov[7][6]*t1402; float t1528 = Cov[0][6]*t1464; float t1529 = Cov[7][7]*t1402; float t1530 = Cov[0][7]*t1464; float t1531 = Cov[7][8]*t1402; float t1532 = Cov[0][8]*t1464; float t1536 = Cov[8][0]*t1402; float t1537 = Cov[1][0]*t1497; float t1545 = Cov[0][0]*t1491; float t1546 = Cov[2][0]*t1503; float t1538 = t1536+t1537-t1545-t1546; float t1539 = Cov[8][1]*t1402; float t1540 = Cov[1][1]*t1497; float t1547 = Cov[0][1]*t1491; float t1548 = Cov[2][1]*t1503; float t1541 = t1539+t1540-t1547-t1548; float t1542 = Cov[8][2]*t1402; float t1543 = Cov[1][2]*t1497; float t1549 = Cov[0][2]*t1491; float t1550 = Cov[2][2]*t1503; float t1544 = t1542+t1543-t1549-t1550; float t1553 = Cov[8][6]*t1402; float t1554 = Cov[1][6]*t1497; float t1555 = Cov[8][7]*t1402; float t1556 = Cov[1][7]*t1497; float t1557 = Cov[8][8]*t1402; float t1558 = Cov[1][8]*t1497; float t1560 = dvz*t1433; float t1559 = t1507-t1560; float t1561 = Cov[0][0]*t1510; float t1567 = Cov[2][0]*t1506; float t1568 = Cov[1][0]*t1559; float t1562 = Cov[3][0]+t1561-t1567-t1568; float t1563 = Cov[0][1]*t1510; float t1569 = Cov[2][1]*t1506; float t1570 = Cov[1][1]*t1559; float t1564 = Cov[3][1]+t1563-t1569-t1570; float t1565 = Cov[0][2]*t1510; float t1571 = Cov[2][2]*t1506; float t1572 = Cov[1][2]*t1559; float t1566 = Cov[3][2]+t1565-t1571-t1572; float t1573 = -t1507+t1560; float t1574 = Cov[1][0]*t1573; float t1575 = Cov[3][0]+t1561-t1567+t1574; float t1576 = Cov[1][1]*t1573; float t1577 = Cov[3][1]+t1563-t1569+t1576; float t1578 = Cov[1][2]*t1573; float t1579 = Cov[3][2]+t1565-t1571+t1578; float t1580 = Cov[0][6]*t1510; float t1581 = Cov[0][7]*t1510; float t1582 = Cov[0][8]*t1510; float t1583 = Cov[1][0]*t1518; float t1584 = Cov[2][0]*t1512; float t1592 = Cov[0][0]*t1515; float t1585 = Cov[4][0]+t1583+t1584-t1592; float t1586 = Cov[1][1]*t1518; float t1587 = Cov[2][1]*t1512; float t1593 = Cov[0][1]*t1515; float t1588 = Cov[4][1]+t1586+t1587-t1593; float t1589 = Cov[1][2]*t1518; float t1590 = Cov[2][2]*t1512; float t1594 = Cov[0][2]*t1515; float t1591 = Cov[4][2]+t1589+t1590-t1594; float t1595 = dvxNoise*t1433*t1447; float t1596 = Cov[1][6]*t1518; float t1597 = Cov[2][6]*t1512; float t1598 = Cov[4][6]+t1596+t1597-Cov[0][6]*t1515; float t1599 = Cov[1][7]*t1518; float t1600 = Cov[2][7]*t1512; float t1601 = Cov[4][7]+t1599+t1600-Cov[0][7]*t1515; float t1602 = Cov[1][8]*t1518; float t1603 = Cov[2][8]*t1512; float t1604 = Cov[4][8]+t1602+t1603-Cov[0][8]*t1515; float t1605 = Cov[2][0]*t1526; float t1606 = Cov[0][0]*t1523; float t1614 = Cov[1][0]*t1521; float t1607 = Cov[5][0]+t1605+t1606-t1614; float t1608 = Cov[2][1]*t1526; float t1609 = Cov[0][1]*t1523; float t1615 = Cov[1][1]*t1521; float t1610 = Cov[5][1]+t1608+t1609-t1615; float t1611 = Cov[2][2]*t1526; float t1612 = Cov[0][2]*t1523; float t1616 = Cov[1][2]*t1521; float t1613 = Cov[5][2]+t1611+t1612-t1616; float t1617 = dvzNoise*t1438*t1448; float t1618 = dvyNoise*t1444*t1450; float t1619 = Cov[2][6]*t1526; float t1620 = Cov[0][6]*t1523; float t1621 = Cov[5][6]+t1619+t1620-Cov[1][6]*t1521; float t1622 = Cov[2][7]*t1526; float t1623 = Cov[0][7]*t1523; float t1624 = Cov[5][7]+t1622+t1623-Cov[1][7]*t1521; float t1625 = Cov[2][8]*t1526; float t1626 = Cov[0][8]*t1523; float t1627 = Cov[5][8]+t1625+t1626-Cov[1][8]*t1521; float nextCov[9][9]; nextCov[0][0] = daxNoise*t1485+t1397*t1424+t1411*t1431-t1419*t1432-t1402*t1454; nextCov[1][0] = -t1397*t1478-t1411*t1481+t1419*t1484+t1402*(t1527+t1528-Cov[1][6]*t1468-Cov[2][6]*t1472); nextCov[2][0] = -t1397*t1538-t1411*t1541+t1419*t1544+t1402*(t1553+t1554-Cov[0][6]*t1491-Cov[2][6]*t1503); nextCov[3][0] = -t1402*(Cov[3][6]+t1580-Cov[2][6]*t1506-Cov[1][6]*t1559)+t1397*t1562+t1411*t1564-t1419*t1566; nextCov[4][0] = t1397*t1585+t1411*t1588-t1402*t1598-t1419*t1591; nextCov[5][0] = t1397*t1607+t1411*t1610-t1402*t1621-t1419*t1613; nextCov[6][0] = -t1628+Cov[6][0]*t1397+Cov[6][1]*t1411-Cov[6][2]*t1419; nextCov[7][0] = -t1527+Cov[7][0]*t1397+Cov[7][1]*t1411-Cov[7][2]*t1419; nextCov[8][0] = -t1553+Cov[8][0]*t1397+Cov[8][1]*t1411-Cov[8][2]*t1419; nextCov[0][1] = -t1402*t1457-t1424*t1464+t1431*t1468+t1432*t1472; nextCov[1][1] = dayNoise*t1485+t1464*t1478-t1468*t1481-t1472*t1484+t1402*(t1529+t1530-Cov[1][7]*t1468-Cov[2][7]*t1472); nextCov[2][1] = t1464*t1538-t1468*t1541-t1472*t1544+t1402*(t1555+t1556-Cov[0][7]*t1491-Cov[2][7]*t1503); nextCov[3][1] = -t1402*(Cov[3][7]+t1581-Cov[2][7]*t1506-Cov[1][7]*t1559)-t1464*t1562+t1468*t1564+t1472*t1566; nextCov[4][1] = -t1402*t1601-t1464*t1585+t1468*t1588+t1472*t1591; nextCov[5][1] = -t1402*t1624-t1464*t1607+t1468*t1610+t1472*t1613; nextCov[6][1] = -t1629-Cov[6][0]*t1464+Cov[6][1]*t1468+Cov[6][2]*t1472; nextCov[7][1] = -t1529-Cov[7][0]*t1464+Cov[7][1]*t1468+Cov[7][2]*t1472; nextCov[8][1] = -t1555-Cov[8][0]*t1464+Cov[8][1]*t1468+Cov[8][2]*t1472; nextCov[0][2] = -t1402*t1460-t1431*t1497+t1432*t1503+t1491*(t1422+t1423-t1429-t1430); nextCov[1][2] = -t1478*t1491+t1481*t1497-t1484*t1503+t1402*(t1531+t1532-Cov[1][8]*t1468-Cov[2][8]*t1472); nextCov[2][2] = dazNoise*t1485-t1491*t1538+t1497*t1541-t1503*t1544+t1402*(t1557+t1558-Cov[0][8]*t1491-Cov[2][8]*t1503); nextCov[3][2] = -t1402*(Cov[3][8]+t1582-Cov[2][8]*t1506-Cov[1][8]*t1559)+t1491*t1562-t1497*t1564+t1503*t1566; nextCov[4][2] = -t1402*t1604+t1491*t1585-t1497*t1588+t1503*t1591; nextCov[5][2] = -t1402*t1627+t1491*t1607-t1497*t1610+t1503*t1613; nextCov[6][2] = -t1630+Cov[6][0]*t1491-Cov[6][1]*t1497+Cov[6][2]*t1503; nextCov[7][2] = -t1531+Cov[7][0]*t1491-Cov[7][1]*t1497+Cov[7][2]*t1503; nextCov[8][2] = -t1557+Cov[8][0]*t1491-Cov[8][1]*t1497+Cov[8][2]*t1503; nextCov[0][3] = Cov[0][3]*t1397+Cov[1][3]*t1411-Cov[2][3]*t1419-Cov[6][3]*t1402-t1432*t1506+t1510*(t1422+t1423-t1429-t1430)-t1559*(t1425+t1426-t1434-t1435); nextCov[1][3] = -Cov[0][3]*t1464-Cov[7][3]*t1402+Cov[1][3]*t1468+Cov[2][3]*t1472-t1478*t1510+t1484*t1506+t1481*t1559; nextCov[2][3] = -Cov[8][3]*t1402+Cov[0][3]*t1491-Cov[1][3]*t1497+Cov[2][3]*t1503-t1510*t1538+t1506*t1544+t1541*t1559; nextCov[3][3] = Cov[3][3]+Cov[0][3]*t1510-Cov[2][3]*t1506+Cov[1][3]*t1573-t1506*t1566+t1510*t1575+t1573*t1577+dvxNoise*sq(t1433)+dvyNoise*sq(t1440)+dvzNoise*sq(t1438); nextCov[4][3] = Cov[4][3]+t1595-Cov[0][3]*t1515+Cov[1][3]*t1518+Cov[2][3]*t1512+t1510*t1585-t1506*t1591+t1573*t1588-dvyNoise*t1440*t1444-dvzNoise*t1438*t1446; nextCov[5][3] = Cov[5][3]+t1617+Cov[0][3]*t1523-Cov[1][3]*t1521+Cov[2][3]*t1526+t1510*t1607-t1506*t1613+t1573*t1610-dvxNoise*t1433*t1451-dvyNoise*t1440*t1450; nextCov[6][3] = Cov[6][3]-Cov[6][2]*t1506+Cov[6][0]*t1510+Cov[6][1]*t1573; nextCov[7][3] = Cov[7][3]-Cov[7][2]*t1506+Cov[7][0]*t1510+Cov[7][1]*t1573; nextCov[8][3] = Cov[8][3]-Cov[8][2]*t1506+Cov[8][0]*t1510+Cov[8][1]*t1573; nextCov[0][4] = Cov[0][4]*t1397+Cov[1][4]*t1411-Cov[2][4]*t1419-Cov[6][4]*t1402-t1424*t1515+t1432*t1512+t1518*(t1425+t1426-t1434-t1435); nextCov[1][4] = -Cov[0][4]*t1464-Cov[7][4]*t1402+Cov[1][4]*t1468+Cov[2][4]*t1472+t1478*t1515-t1484*t1512-t1481*t1518; nextCov[2][4] = -Cov[8][4]*t1402+Cov[0][4]*t1491-Cov[1][4]*t1497+Cov[2][4]*t1503+t1515*t1538-t1512*t1544-t1518*t1541; nextCov[3][4] = Cov[3][4]+t1595+Cov[0][4]*t1510-Cov[2][4]*t1506+Cov[1][4]*t1573-t1515*t1575+t1512*t1579+t1518*t1577-dvyNoise*t1440*t1444-dvzNoise*t1438*t1446; nextCov[4][4] = Cov[4][4]-Cov[0][4]*t1515+Cov[1][4]*t1518+Cov[2][4]*t1512-t1515*t1585+t1512*t1591+t1518*t1588+dvxNoise*sq(t1447)+dvyNoise*sq(t1444)+dvzNoise*sq(t1446); nextCov[5][4] = Cov[5][4]+t1618+Cov[0][4]*t1523-Cov[1][4]*t1521+Cov[2][4]*t1526-t1515*t1607+t1512*t1613+t1518*t1610-dvxNoise*t1447*t1451-dvzNoise*t1446*t1448; nextCov[6][4] = Cov[6][4]+Cov[6][2]*t1512-Cov[6][0]*t1515+Cov[6][1]*t1518; nextCov[7][4] = Cov[7][4]+Cov[7][2]*t1512-Cov[7][0]*t1515+Cov[7][1]*t1518; nextCov[8][4] = Cov[8][4]+Cov[8][2]*t1512-Cov[8][0]*t1515+Cov[8][1]*t1518; nextCov[0][5] = Cov[0][5]*t1397+Cov[1][5]*t1411-Cov[2][5]*t1419-Cov[6][5]*t1402+t1424*t1523-t1431*t1521+t1526*(t1427+t1428-t1442-t1443); nextCov[1][5] = -Cov[0][5]*t1464-Cov[7][5]*t1402+Cov[1][5]*t1468+Cov[2][5]*t1472-t1478*t1523+t1481*t1521-t1484*t1526; nextCov[2][5] = -Cov[8][5]*t1402+Cov[0][5]*t1491-Cov[1][5]*t1497+Cov[2][5]*t1503-t1523*t1538+t1521*t1541-t1526*t1544; nextCov[3][5] = Cov[3][5]+t1617+Cov[0][5]*t1510-Cov[2][5]*t1506+Cov[1][5]*t1573-t1521*t1577+t1523*t1575+t1526*t1579-dvxNoise*t1433*t1451-dvyNoise*t1440*t1450; nextCov[4][5] = Cov[4][5]+t1618-Cov[0][5]*t1515+Cov[1][5]*t1518+Cov[2][5]*t1512+t1523*t1585-t1521*t1588+t1526*t1591-dvxNoise*t1447*t1451-dvzNoise*t1446*t1448; nextCov[5][5] = Cov[5][5]+Cov[0][5]*t1523-Cov[1][5]*t1521+Cov[2][5]*t1526+t1523*t1607-t1521*t1610+t1526*t1613+dvxNoise*sq(t1451)+dvyNoise*sq(t1450)+dvzNoise*sq(t1448); nextCov[6][5] = Cov[6][5]-Cov[6][1]*t1521+Cov[6][0]*t1523+Cov[6][2]*t1526; nextCov[7][5] = Cov[7][5]-Cov[7][1]*t1521+Cov[7][0]*t1523+Cov[7][2]*t1526; nextCov[8][5] = Cov[8][5]-Cov[8][1]*t1521+Cov[8][0]*t1523+Cov[8][2]*t1526; nextCov[0][6] = t1454; nextCov[1][6] = -t1527-t1528+Cov[1][6]*t1468+Cov[2][6]*t1472; nextCov[2][6] = -t1553-t1554+Cov[0][6]*t1491+Cov[2][6]*t1503; nextCov[3][6] = Cov[3][6]+t1580-Cov[2][6]*t1506+Cov[1][6]*t1573; nextCov[4][6] = t1598; nextCov[5][6] = t1621; nextCov[6][6] = Cov[6][6]; nextCov[7][6] = Cov[7][6]; nextCov[8][6] = Cov[8][6]; nextCov[0][7] = t1457; nextCov[1][7] = -t1529-t1530+Cov[1][7]*t1468+Cov[2][7]*t1472; nextCov[2][7] = -t1555-t1556+Cov[0][7]*t1491+Cov[2][7]*t1503; nextCov[3][7] = Cov[3][7]+t1581-Cov[2][7]*t1506+Cov[1][7]*t1573; nextCov[4][7] = t1601; nextCov[5][7] = t1624; nextCov[6][7] = Cov[6][7]; nextCov[7][7] = Cov[7][7]; nextCov[8][7] = Cov[8][7]; nextCov[0][8] = t1460; nextCov[1][8] = -t1531-t1532+Cov[1][8]*t1468+Cov[2][8]*t1472; nextCov[2][8] = -t1557-t1558+Cov[0][8]*t1491+Cov[2][8]*t1503; nextCov[3][8] = Cov[3][8]+t1582-Cov[2][8]*t1506+Cov[1][8]*t1573; nextCov[4][8] = t1604; nextCov[5][8] = t1627; nextCov[6][8] = Cov[6][8]; nextCov[7][8] = Cov[7][8]; nextCov[8][8] = Cov[8][8]; // Add the gyro bias state noise for (uint8_t i=6;i<=8;i++) { nextCov[i][i] = nextCov[i][i] + delAngBiasVariance; } // copy predicted variances whilst constraining to be non-negative for (uint8_t index=0; index<=8; index++) { if (nextCov[index][index] < 0.0f) { Cov[index][index] = 0.0f; } else { Cov[index][index] = nextCov[index][index]; } } // copy elements to covariance matrix whilst enforcing symmetry for (uint8_t rowIndex=1; rowIndex<=8; rowIndex++) { for (uint8_t colIndex=0; colIndex<=rowIndex-1; colIndex++) { Cov[rowIndex][colIndex] = 0.5f*(nextCov[rowIndex][colIndex] + nextCov[colIndex][rowIndex]); Cov[colIndex][rowIndex] = Cov[rowIndex][colIndex]; } } } // Fuse the SoloGimbalEKF velocity estimates - this enables alevel reference to be maintained during constant turns void SoloGimbalEKF::fuseVelocity() { const auto &_ahrs = AP::ahrs(); if (!_ahrs.have_inertial_nav()) { return; } float R_OBS = 0.25f; float innovation[3]; float varInnov[3]; Vector3f angErrVec; uint8_t stateIndex; float K[9]; // Fuse measurements sequentially for (uint8_t obsIndex=0;obsIndex<=2;obsIndex++) { stateIndex = 3 + obsIndex; // Calculate the velocity measurement innovation using the SoloGimbalEKF estimate as the observation // if heading isn't aligned, use zero velocity (static assumption) if (YawAligned) { Vector3f measVelNED = Vector3f(0,0,0); nav_filter_status main_ekf_status; if (_ahrs.get_filter_status(main_ekf_status)) { if (main_ekf_status.flags.horiz_vel) { _ahrs.get_velocity_NED(measVelNED); } } innovation[obsIndex] = state.velocity[obsIndex] - measVelNED[obsIndex]; } else { innovation[obsIndex] = state.velocity[obsIndex]; } // Zero the attitude error states - they represent the incremental error so must be zero before corrections are applied state.angErr.zero(); // Calculate the innovation variance varInnov[obsIndex] = Cov[stateIndex][stateIndex] + R_OBS; // Calculate the Kalman gain and correct states, taking advantage of direct state observation for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) { K[rowIndex] = Cov[rowIndex][stateIndex]/varInnov[obsIndex]; states[rowIndex] -= K[rowIndex] * innovation[obsIndex]; } // Store tilt error estimate for external monitoring angErrVec = angErrVec + state.angErr; // the first 3 states represent the angular error vector where truth = estimate + error. This is is used to correct the estimated quaternion // Bring the quaternion state estimate back to 'truth' by adding the error state.quat.rotate(state.angErr); // re-normalise the quaternion state.quat.normalize(); // Update the covariance for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) { for (uint8_t colIndex=0;colIndex<=8;colIndex++) { Cov[rowIndex][colIndex] = Cov[rowIndex][colIndex] - K[rowIndex]*Cov[stateIndex][colIndex]; } } // force symmetry and constrain diagonals to be non-negative fixCovariance(); } // calculate tilt component of angle correction TiltCorrectionSquared = sq(angErrVec.x) + sq(angErrVec.y); } // check for new magnetometer data and update store measurements if available void SoloGimbalEKF::readMagData() { const auto &_ahrs = AP::ahrs(); if (_ahrs.get_compass() && _ahrs.get_compass()->use_for_yaw() && _ahrs.get_compass()->last_update_usec() != lastMagUpdate) { // store time of last measurement update lastMagUpdate = _ahrs.get_compass()->last_update_usec(); // read compass data and scale to improve numerical conditioning magData = _ahrs.get_compass()->get_field(); // let other processes know that new compass data has arrived newDataMag = true; } else { newDataMag = false; } } // Fuse compass measurements from autopilot void SoloGimbalEKF::fuseCompass() { float q0 = state.quat[0]; float q1 = state.quat[1]; float q2 = state.quat[2]; float q3 = state.quat[3]; float magX = magData.x; float magY = magData.y; float magZ = magData.z; const float R_MAG = 3e-2f; // Calculate observation Jacobian float t5695 = sq(q0); float t5696 = sq(q1); float t5697 = sq(q2); float t5698 = sq(q3); float t5699 = t5695+t5696-t5697-t5698; float t5702 = q0*q2*2.0f; float t5703 = q1*q3*2.0f; float t5704 = t5702+t5703; float t5705 = q0*q3*2.0f; float t5707 = q1*q2*2.0f; float t5706 = t5705-t5707; float t5708 = cosTheta*sinPsi; float t5709 = sinPhi*sinTheta*cosPsi; float t5710 = t5708+t5709; float t5711 = t5705+t5707; float t5712 = sinTheta*sinPsi; float t5730 = cosTheta*sinPhi*cosPsi; float t5713 = t5712-t5730; float t5714 = q0*q1*2.0f; float t5720 = q2*q3*2.0f; float t5715 = t5714-t5720; float t5716 = t5695-t5696+t5697-t5698; float t5717 = sinTheta*cosPsi; float t5718 = cosTheta*sinPhi*sinPsi; float t5719 = t5717+t5718; float t5721 = cosTheta*cosPsi; float t5735 = sinPhi*sinTheta*sinPsi; float t5722 = t5721-t5735; float t5724 = sinPhi*t5706; float t5725 = cosPhi*sinTheta*t5699; float t5726 = cosPhi*cosTheta*t5704; float t5727 = t5724+t5725-t5726; float t5728 = magZ*t5727; float t5729 = t5699*t5710; float t5731 = t5704*t5713; float t5732 = cosPhi*cosPsi*t5706; float t5733 = t5729+t5731-t5732; float t5734 = magY*t5733; float t5736 = t5699*t5722; float t5737 = t5704*t5719; float t5738 = cosPhi*sinPsi*t5706; float t5739 = t5736+t5737+t5738; float t5740 = magX*t5739; float t5741 = -t5728+t5734+t5740; float t5742 = 1.0f/t5741; float t5743 = sinPhi*t5716; float t5744 = cosPhi*cosTheta*t5715; float t5745 = cosPhi*sinTheta*t5711; float t5746 = -t5743+t5744+t5745; float t5747 = magZ*t5746; float t5748 = t5710*t5711; float t5749 = t5713*t5715; float t5750 = cosPhi*cosPsi*t5716; float t5751 = t5748-t5749+t5750; float t5752 = magY*t5751; float t5753 = t5715*t5719; float t5754 = t5711*t5722; float t5755 = cosPhi*sinPsi*t5716; float t5756 = t5753-t5754+t5755; float t5757 = magX*t5756; float t5758 = t5747-t5752+t5757; float t5759 = t5742*t5758; float t5723 = tanf(t5759); float t5760 = sq(t5723); float t5761 = t5760+1.0f; float t5762 = 1.0f/sq(t5741); float H_MAG[3]; H_MAG[0] = -t5761*(t5742*(magZ*(sinPhi*t5715+cosPhi*cosTheta*t5716)+magY*(t5713*t5716+cosPhi*cosPsi*t5715)+magX*(t5716*t5719-cosPhi*sinPsi*t5715))-t5758*t5762*(magZ*(sinPhi*t5704+cosPhi*cosTheta*t5706)+magY*(t5706*t5713+cosPhi*cosPsi*t5704)+magX*(t5706*t5719-cosPhi*sinPsi*t5704))); H_MAG[1] = t5761*(t5742*(magZ*(cosPhi*cosTheta*t5711-cosPhi*sinTheta*t5715)+magY*(t5711*t5713+t5710*t5715)+magX*(t5711*t5719+t5715*t5722))+t5758*t5762*(magZ*(cosPhi*cosTheta*t5699+cosPhi*sinTheta*t5704)+magY*(t5699*t5713-t5704*t5710)+magX*(t5699*t5719-t5704*t5722))); H_MAG[2] = t5761*(t5742*(-magZ*(sinPhi*t5711+cosPhi*sinTheta*t5716)+magY*(t5710*t5716-cosPhi*cosPsi*t5711)+magX*(t5716*t5722+cosPhi*sinPsi*t5711))-t5758*t5762*(magZ*(sinPhi*t5699-cosPhi*sinTheta*t5706)+magY*(t5706*t5710+cosPhi*t5699*cosPsi)+magX*(t5706*t5722-cosPhi*t5699*sinPsi))); // Calculate innovation variance and Kalman gains, taking advantage of the fact that only the first 3 elements in H are non zero float PH[3]; float varInnov = R_MAG; for (uint8_t rowIndex=0;rowIndex<=2;rowIndex++) { PH[rowIndex] = 0.0f; for (uint8_t colIndex=0;colIndex<=2;colIndex++) { PH[rowIndex] += Cov[rowIndex][colIndex]*H_MAG[colIndex]; } varInnov += H_MAG[rowIndex]*PH[rowIndex]; } float K_MAG[9]; float varInnovInv = 1.0f / varInnov; for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) { K_MAG[rowIndex] = 0.0f; for (uint8_t colIndex=0;colIndex<=2;colIndex++) { K_MAG[rowIndex] += Cov[rowIndex][colIndex]*H_MAG[colIndex]; } K_MAG[rowIndex] *= varInnovInv; } // Calculate the innovation float innovation = calcMagHeadingInnov(); // limit the innovation so that initial corrections are not too large if (innovation > 0.5f) { innovation = 0.5f; } else if (innovation < -0.5f) { innovation = -0.5f; } // correct the state vector state.angErr.zero(); for (uint8_t i=0;i<=8;i++) { states[i] -= K_MAG[i] * innovation; } // the first 3 states represent the angular error vector where truth = estimate + error. This is is used to correct the estimated quaternion // Bring the quaternion state estimate back to 'truth' by adding the error state.quat.rotate(state.angErr); // re-normalise the quaternion state.quat.normalize(); // correct the covariance using P = P - K*H*P taking advantage of the fact that only the first 3 elements in H are non zero float HP[9]; for (uint8_t colIndex=0;colIndex<=8;colIndex++) { HP[colIndex] = 0.0f; for (uint8_t rowIndex=0;rowIndex<=2;rowIndex++) { HP[colIndex] += H_MAG[rowIndex]*Cov[rowIndex][colIndex]; } } for (uint8_t rowIndex=0;rowIndex<=8;rowIndex++) { for (uint8_t colIndex=0;colIndex<=8;colIndex++) { Cov[rowIndex][colIndex] -= K_MAG[rowIndex] * HP[colIndex]; } } // force symmetry and constrain diagonals to be non-negative fixCovariance(); } // Perform an initial heading alignment using the magnetic field and assumed declination void SoloGimbalEKF::alignHeading() { // calculate the correction rotation vector in NED frame Vector3f deltaRotNED = Vector3f(0,0,-calcMagHeadingInnov()); // rotate into sensor frame Vector3f angleCorrection = Tsn.transposed()*deltaRotNED; // apply the correction to the quaternion state // Bring the quaternion state estimate back to 'truth' by adding the error state.quat.rotate(angleCorrection); // re-normalize the quaternion state.quat.normalize(); } // Calculate magnetic heading innovation float SoloGimbalEKF::calcMagHeadingInnov() { // Define rotation from magnetometer to sensor using a 312 rotation sequence Matrix3f Tms; Tms[0][0] = cosTheta*cosPsi-sinPsi*sinPhi*sinTheta; Tms[1][0] = -sinPsi*cosPhi; Tms[2][0] = cosPsi*sinTheta+cosTheta*sinPsi*sinPhi; Tms[0][1] = cosTheta*sinPsi+cosPsi*sinPhi*sinTheta; Tms[1][1] = cosPsi*cosPhi; Tms[2][1] = sinPsi*sinTheta-cosTheta*cosPsi*sinPhi; Tms[0][2] = -sinTheta*cosPhi; Tms[1][2] = sinPhi; Tms[2][2] = cosTheta*cosPhi; const auto &_ahrs = AP::ahrs(); // get earth magnetic field estimate from main ekf if available to take advantage of main ekf magnetic field learning Vector3f earth_magfield = Vector3f(0,0,0); _ahrs.get_mag_field_NED(earth_magfield); float declination; if (!earth_magfield.is_zero()) { declination = atan2f(earth_magfield.y,earth_magfield.x); } else { declination = _ahrs.get_compass()->get_declination(); } Vector3f body_magfield = Vector3f(0,0,0); _ahrs.get_mag_field_correction(body_magfield); // Define rotation from magnetometer to NED axes Matrix3f Tmn = Tsn*Tms; // rotate magnetic field measured at top plate into NED axes afer applying bias values learnt by main EKF Vector3f magMeasNED = Tmn*(magData - body_magfield); // calculate the innovation where the predicted measurement is the angle wrt magnetic north of the horizontal component of the measured field float innovation = atan2f(magMeasNED.y,magMeasNED.x) - declination; // wrap the innovation so it sits on the range from +-pi if (innovation > M_PI) { innovation = innovation - 2*M_PI; } else if (innovation < -M_PI) { innovation = innovation + 2*M_PI; } // Unwrap so that a large yaw gyro bias offset that causes the heading to wrap does not lead to continual uncontrolled heading drift if (innovation - lastInnovation > M_PI) { // Angle has wrapped in the positive direction to subtract an additional 2*Pi innovationIncrement -= 2*M_PI; } else if (innovation -innovationIncrement < -M_PI) { // Angle has wrapped in the negative direction so add an additional 2*Pi innovationIncrement += 2*M_PI; } lastInnovation = innovation; return innovation + innovationIncrement; } // Force symmmetry and non-negative diagonals on state covarinace matrix void SoloGimbalEKF::fixCovariance() { // force symmetry for (uint8_t rowIndex=1; rowIndex<=8; rowIndex++) { for (uint8_t colIndex=0; colIndex<=rowIndex-1; colIndex++) { Cov[rowIndex][colIndex] = 0.5f*(Cov[rowIndex][colIndex] + Cov[colIndex][rowIndex]); Cov[colIndex][rowIndex] = Cov[rowIndex][colIndex]; } } // constrain diagonals to be non-negative for (uint8_t index=1; index<=8; index++) { if (Cov[index][index] < 0.0f) { Cov[index][index] = 0.0f; } } } // get gyro bias data void SoloGimbalEKF::getGyroBias(Vector3f &gyroBias) const { if (dtIMU < 1.0e-6f) { gyroBias.zero(); } else { gyroBias = state.delAngBias / dtIMU; } } void SoloGimbalEKF::setGyroBias(const Vector3f &gyroBias) { if (dtIMU < 1.0e-6f) { return; } state.delAngBias = gyroBias * dtIMU; } // get quaternion data void SoloGimbalEKF::getQuat(Quaternion &quat) const { quat = state.quat; } // get filter status - true is aligned bool SoloGimbalEKF::getStatus() const { float run_time = AP_HAL::millis() - StartTime_ms; return YawAligned && (run_time > 15000); } #endif // HAL_SOLO_GIMBAL_ENABLED