// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /***************************************** * Throttle slew limit *****************************************/ static void throttle_slew_limit(int16_t last_throttle) { // if slew limit rate is set to zero then do not slew limit if (g.throttle_slewrate) { // limit throttle change by the given percentage per second float temp = g.throttle_slewrate * G_Dt * 0.01f * fabsf(channel_throttle->radio_max - channel_throttle->radio_min); // allow a minimum change of 1 PWM per cycle if (temp < 1) { temp = 1; } channel_throttle->radio_out = constrain_int16(channel_throttle->radio_out, last_throttle - temp, last_throttle + temp); } } /* check for triggering of start of auto mode */ static bool auto_check_trigger(void) { // only applies to AUTO mode if (control_mode != AUTO) { return true; } // check for user pressing the auto trigger to off if (auto_triggered && g.auto_trigger_pin != -1 && check_digital_pin(g.auto_trigger_pin) == 1) { gcs_send_text_P(SEVERITY_LOW, PSTR("AUTO triggered off")); auto_triggered = false; return false; } // if already triggered, then return true, so you don't // need to hold the switch down if (auto_triggered) { return true; } if (g.auto_trigger_pin == -1 && g.auto_kickstart == 0.0f) { // no trigger configured - let's go! auto_triggered = true; return true; } if (g.auto_trigger_pin != -1 && check_digital_pin(g.auto_trigger_pin) == 0) { gcs_send_text_P(SEVERITY_LOW, PSTR("Triggered AUTO with pin")); auto_triggered = true; return true; } if (g.auto_kickstart != 0.0f) { float xaccel = ins.get_accel().x; if (xaccel >= g.auto_kickstart) { gcs_send_text_fmt(PSTR("Triggered AUTO xaccel=%.1f"), xaccel); auto_triggered = true; return true; } } return false; } /* work out if we are going to use pivot steering */ static bool use_pivot_steering(void) { if (control_mode >= AUTO && g.skid_steer_out && g.pivot_turn_angle != 0) { int16_t bearing_error = wrap_180_cd(nav_controller->target_bearing_cd() - ahrs.yaw_sensor) / 100; if (abs(bearing_error) > g.pivot_turn_angle) { return true; } } return false; } /* calculate the throtte for auto-throttle modes */ static void calc_throttle(float target_speed) { if (!auto_check_trigger()) { channel_throttle->servo_out = g.throttle_min.get(); return; } float throttle_base = (fabsf(target_speed) / g.speed_cruise) * g.throttle_cruise; int throttle_target = throttle_base + throttle_nudge; /* reduce target speed in proportion to turning rate, up to the SPEED_TURN_GAIN percentage. */ float steer_rate = fabsf(lateral_acceleration / (g.turn_max_g*GRAVITY_MSS)); steer_rate = constrain_float(steer_rate, 0.0, 1.0); // use g.speed_turn_gain for a 90 degree turn, and in proportion // for other turn angles int32_t turn_angle = wrap_180_cd(next_navigation_leg_cd - ahrs.yaw_sensor); float speed_turn_ratio = constrain_float(fabsf(turn_angle / 9000.0f), 0, 1); float speed_turn_reduction = (100 - g.speed_turn_gain) * speed_turn_ratio * 0.01f; float reduction = 1.0 - steer_rate*speed_turn_reduction; if (control_mode >= AUTO && wp_distance <= g.speed_turn_dist) { // in auto-modes we reduce speed when approaching waypoints float reduction2 = 1.0 - speed_turn_reduction*((g.speed_turn_dist - wp_distance)/g.speed_turn_dist); if (reduction2 < reduction) { reduction = reduction2; } } // reduce the target speed by the reduction factor target_speed *= reduction; groundspeed_error = fabsf(target_speed) - ground_speed; throttle = throttle_target + (g.pidSpeedThrottle.get_pid(groundspeed_error * 100) / 100); // also reduce the throttle by the reduction factor. This gives a // much faster response in turns throttle *= reduction; if (in_reverse) { channel_throttle->servo_out = constrain_int16(-throttle, -g.throttle_max, -g.throttle_min); } else { channel_throttle->servo_out = constrain_int16(throttle, g.throttle_min, g.throttle_max); } if (!in_reverse && g.braking_percent != 0 && groundspeed_error < -g.braking_speederr) { // the user has asked to use reverse throttle to brake. Apply // it in proportion to the ground speed error, but only when // our ground speed error is more than BRAKING_SPEEDERR. // // We use a linear gain, with 0 gain at a ground speed error // of braking_speederr, and 100% gain when groundspeed_error // is 2*braking_speederr float brake_gain = constrain_float(((-groundspeed_error)-g.braking_speederr)/g.braking_speederr, 0, 1); int16_t braking_throttle = g.throttle_max * (g.braking_percent * 0.01f) * brake_gain; channel_throttle->servo_out = constrain_int16(-braking_throttle, -g.throttle_max, -g.throttle_min); // temporarily set us in reverse to allow the PWM setting to // go negative set_reverse(true); } if (use_pivot_steering()) { channel_throttle->servo_out = 0; } } /***************************************** * Calculate desired turn angles (in medium freq loop) *****************************************/ static void calc_lateral_acceleration() { switch (control_mode) { case AUTO: nav_controller->update_waypoint(prev_WP, next_WP); break; case RTL: case GUIDED: case STEERING: nav_controller->update_waypoint(current_loc, next_WP); break; default: return; } // Calculate the required turn of the wheels // negative error = left turn // positive error = right turn lateral_acceleration = nav_controller->lateral_acceleration(); if (use_pivot_steering()) { int16_t bearing_error = wrap_180_cd(nav_controller->target_bearing_cd() - ahrs.yaw_sensor) / 100; if (bearing_error > 0) { lateral_acceleration = g.turn_max_g*GRAVITY_MSS; } else { lateral_acceleration = -g.turn_max_g*GRAVITY_MSS; } } } /* calculate steering angle given lateral_acceleration */ static void calc_nav_steer() { // add in obstacle avoidance lateral_acceleration += (obstacle.turn_angle/45.0f) * g.turn_max_g; // constrain to max G force lateral_acceleration = constrain_float(lateral_acceleration, -g.turn_max_g*GRAVITY_MSS, g.turn_max_g*GRAVITY_MSS); channel_steer->servo_out = steerController.get_steering_out_lat_accel(lateral_acceleration); } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ static void set_servos(void) { int16_t last_throttle = channel_throttle->radio_out; // support a separate steering channel RC_Channel_aux::set_servo_out(RC_Channel_aux::k_steering, channel_steer->pwm_to_angle_dz(0)); if ((control_mode == MANUAL || control_mode == LEARNING) && (g.skid_steer_out == g.skid_steer_in)) { // do a direct pass through of radio values channel_steer->radio_out = channel_steer->read(); channel_throttle->radio_out = channel_throttle->read(); if (failsafe.bits & FAILSAFE_EVENT_THROTTLE) { // suppress throttle if in failsafe and manual channel_throttle->radio_out = channel_throttle->radio_trim; } } else { channel_steer->calc_pwm(); if (in_reverse) { channel_throttle->servo_out = constrain_int16(channel_throttle->servo_out, -g.throttle_max, -g.throttle_min); } else { channel_throttle->servo_out = constrain_int16(channel_throttle->servo_out, g.throttle_min.get(), g.throttle_max.get()); } if ((failsafe.bits & FAILSAFE_EVENT_THROTTLE) && control_mode < AUTO) { // suppress throttle if in failsafe channel_throttle->servo_out = 0; } // convert 0 to 100% into PWM channel_throttle->calc_pwm(); // limit throttle movement speed throttle_slew_limit(last_throttle); if (g.skid_steer_out) { // convert the two radio_out values to skid steering values /* mixing rule: steering = motor1 - motor2 throttle = 0.5*(motor1 + motor2) motor1 = throttle + 0.5*steering motor2 = throttle - 0.5*steering */ float steering_scaled = channel_steer->norm_output(); float throttle_scaled = channel_throttle->norm_output(); float motor1 = throttle_scaled + 0.5*steering_scaled; float motor2 = throttle_scaled - 0.5*steering_scaled; channel_steer->servo_out = 4500*motor1; channel_throttle->servo_out = 100*motor2; channel_steer->calc_pwm(); channel_throttle->calc_pwm(); } } #if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS // send values to the PWM timers for output // ---------------------------------------- channel_steer->output(); channel_throttle->output(); RC_Channel_aux::output_ch_all(); #endif }