/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * AP_OSD partially based on betaflight and inav osd.c implemention. * clarity.mcm font is taken from inav configurator. * Many thanks to their authors. */ /* parameter settings for one screen */ #include "AP_OSD.h" #include "AP_OSD_Backend.h" #include #include #include #include #include #include #include #include const AP_Param::GroupInfo AP_OSD_Screen::var_info[] = { // @Param: ENABLE // @DisplayName: Enable screen // @Description: Enable this screen // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO_FLAGS("ENABLE", 1, AP_OSD_Screen, enabled, 0, AP_PARAM_FLAG_ENABLE), // @Param: CHAN_MIN // @DisplayName: Transmitter switch screen minimum pwm // @Description: This sets the PWM lower limit for this screen // @Range: 900 2100 // @User: Standard AP_GROUPINFO("CHAN_MIN", 2, AP_OSD_Screen, channel_min, 900), // @Param: CHAN_MAX // @DisplayName: Transmitter switch screen maximum pwm // @Description: This sets the PWM upper limit for this screen // @Range: 900 2100 // @User: Standard AP_GROUPINFO("CHAN_MAX", 3, AP_OSD_Screen, channel_max, 2100), // @Group: ALTITUDE // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(altitude, "ALTITUDE", 4, AP_OSD_Screen, AP_OSD_Setting), // @Group: BATVOLT // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(bat_volt, "BAT_VOLT", 5, AP_OSD_Screen, AP_OSD_Setting), // @Group: RSSI // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(rssi, "RSSI", 6, AP_OSD_Screen, AP_OSD_Setting), // @Group: CURRENT // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(current, "CURRENT", 7, AP_OSD_Screen, AP_OSD_Setting), // @Group: BATUSED // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(batused, "BATUSED", 8, AP_OSD_Screen, AP_OSD_Setting), // @Group: SATS // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(sats, "SATS", 9, AP_OSD_Screen, AP_OSD_Setting), // @Group: FLTMODE // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(fltmode, "FLTMODE", 10, AP_OSD_Screen, AP_OSD_Setting), // @Group: MESSAGE // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(message, "MESSAGE", 11, AP_OSD_Screen, AP_OSD_Setting), // @Group: GSPEED // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(gspeed, "GSPEED", 12, AP_OSD_Screen, AP_OSD_Setting), // @Group: HORIZON // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(horizon, "HORIZON", 13, AP_OSD_Screen, AP_OSD_Setting), // @Group: HOME // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(home, "HOME", 14, AP_OSD_Screen, AP_OSD_Setting), //@Group: HEADING //@Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(heading, "HEADING", 15, AP_OSD_Screen, AP_OSD_Setting), //@Group: THROTTLE //@Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(throttle, "THROTTLE", 16, AP_OSD_Screen, AP_OSD_Setting), //@Group: COMPASS //@Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(compass, "COMPASS", 17, AP_OSD_Screen, AP_OSD_Setting), //@Group: WIND //@Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(wind, "WIND", 18, AP_OSD_Screen, AP_OSD_Setting), //@Group: ASPEED //@Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(aspeed, "ASPEED", 19, AP_OSD_Screen, AP_OSD_Setting), //@Group: VSPEED //@Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(vspeed, "VSPEED", 20, AP_OSD_Screen, AP_OSD_Setting), #ifdef HAVE_AP_BLHELI_SUPPORT // @Group: BLHTEMP // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(blh_temp, "BLHTEMP", 21, AP_OSD_Screen, AP_OSD_Setting), // @Group: BLHRPM // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(blh_rpm, "BLHRPM", 22, AP_OSD_Screen, AP_OSD_Setting), // @Group: BLHAMPS // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(blh_amps, "BLHAMPS", 23, AP_OSD_Screen, AP_OSD_Setting), #endif // @Group: GPSLAT // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(gps_latitude, "GPSLAT", 24, AP_OSD_Screen, AP_OSD_Setting), // @Group: GPSLONG // @Path: AP_OSD_Setting.cpp AP_SUBGROUPINFO(gps_longitude, "GPSLONG", 25, AP_OSD_Screen, AP_OSD_Setting), AP_GROUPEND }; // constructor AP_OSD_Screen::AP_OSD_Screen() { } //Symbols #define SYM_BLANK 0x20 #define SYM_COLON 0x2D #define SYM_ZERO_HALF_TRAILING_DOT 192 #define SYM_ZERO_HALF_LEADING_DOT 208 #define SYM_M 0xB9 #define SYM_KM 0xBA #define SYM_ALT_M 0xB1 #define SYM_BATT_FULL 0x90 #define SYM_RSSI 0x01 #define SYM_VOLT 0x06 #define SYM_AMP 0x9A #define SYM_MAH 0x07 #define SYM_MS 0x9F #define SYM_KMH 0xA1 #define SYM_DEGR 0xA8 #define SYM_PCNT 0x25 #define SYM_SAT_L 0x1E #define SYM_SAT_R 0x1F #define SYM_HOME 0xBF #define SYM_WIND 0x16 #define SYM_ARROW_START 0x60 #define SYM_ARROW_COUNT 16 #define SYM_AH_START 0x80 #define SYM_AH_COUNT 9 #define SYM_AH_CENTER_LINE_LEFT 0x26 #define SYM_AH_CENTER_LINE_RIGHT 0x27 #define SYM_AH_CENTER 0x7E #define SYM_HEADING_N 0x18 #define SYM_HEADING_S 0x19 #define SYM_HEADING_E 0x1A #define SYM_HEADING_W 0x1B #define SYM_HEADING_DIVIDED_LINE 0x1C #define SYM_HEADING_LINE 0x1D #define SYM_UP_UP 0xA2 #define SYM_UP 0xA3 #define SYM_DOWN 0xA4 #define SYM_DOWN_DOWN 0xA5 #define SYM_DEGREES_C 0x0E #define SYM_DEGREES_F 0x0D #define SYM_GPS_LAT 0xA6 #define SYM_GPS_LONG 0xA7 void AP_OSD_Screen::draw_altitude(uint8_t x, uint8_t y) { float alt; AP::ahrs().get_relative_position_D_home(alt); backend->write(x, y, false, "%4.0f%c", -alt, SYM_ALT_M); } void AP_OSD_Screen::draw_bat_volt(uint8_t x, uint8_t y) { AP_BattMonitor &battery = AP_BattMonitor::battery(); uint8_t p = battery.capacity_remaining_pct(); p = (100 - p) / 16.6; backend->write(x,y, battery.has_failsafed(), "%c%2.1f%c", SYM_BATT_FULL + p, battery.voltage(), SYM_VOLT); } void AP_OSD_Screen::draw_rssi(uint8_t x, uint8_t y) { AP_RSSI *ap_rssi = AP_RSSI::get_instance(); if (ap_rssi) { int rssiv = ap_rssi->read_receiver_rssi_uint8(); rssiv = (rssiv * 99) / 255; backend->write(x, y, rssiv < 5, "%c%2d", SYM_RSSI, rssiv); } } void AP_OSD_Screen::draw_current(uint8_t x, uint8_t y) { AP_BattMonitor &battery = AP_BattMonitor::battery(); float amps = battery.current_amps(); backend->write(x, y, false, "%2.1f%c", amps, SYM_AMP); } void AP_OSD_Screen::draw_fltmode(uint8_t x, uint8_t y) { AP_Notify * notify = AP_Notify::instance(); if (notify) { backend->write(x, y, notify->get_flight_mode_str()); } } void AP_OSD_Screen::draw_sats(uint8_t x, uint8_t y) { AP_GPS & gps = AP::gps(); backend->write(x, y, false, "%c%c%2d", SYM_SAT_L, SYM_SAT_R, gps.num_sats()); } void AP_OSD_Screen::draw_batused(uint8_t x, uint8_t y) { AP_BattMonitor &battery = AP_BattMonitor::battery(); backend->write(x,y, battery.has_failsafed(), "%4.0f%c", battery.consumed_mah(), SYM_MAH); } //Autoscroll message is the same as in minimosd-extra. //Thanks to night-ghost for the approach. void AP_OSD_Screen::draw_message(uint8_t x, uint8_t y) { AP_Notify * notify = AP_Notify::instance(); if (notify) { uint32_t visible_time = AP_HAL::millis() - notify->get_text_updated_millis(); if (visible_time < message_show_time_ms) { char buffer[NOTIFY_TEXT_BUFFER_SIZE]; strncpy(buffer, notify->get_text(), sizeof(buffer)); int16_t len = strnlen(buffer, sizeof(buffer)); //converted to uppercase, //because we do not have small letter chars inside used font for (int16_t i=0; i message_visible_width) { int16_t chars_to_scroll = len - message_visible_width; int16_t total_cycles = 2*message_scroll_delay + 2*chars_to_scroll; int16_t current_cycle = (visible_time / message_scroll_time_ms) % total_cycles; //calculate scroll start_position if (current_cycle < total_cycles/2) { //move to the left start_position = current_cycle - message_scroll_delay; } else { //move to the right start_position = total_cycles - current_cycle; } start_position = constrain_int16(start_position, 0, chars_to_scroll); int16_t end_position = start_position + message_visible_width; //ensure array boundaries start_position = MIN(start_position, int(sizeof(buffer)-1)); end_position = MIN(end_position, int(sizeof(buffer)-1)); //trim invisible part buffer[end_position] = 0; } backend->write(x, y, buffer + start_position); } } } void AP_OSD_Screen::draw_speed_vector(uint8_t x, uint8_t y,Vector2f v, int32_t yaw) { float v_length = v.length(); char arrow = SYM_ARROW_START; if (v_length > 1.0f) { int32_t angle = wrap_360_cd(DEGX100 * atan2f(v.y, v.x) - yaw); int32_t interval = 36000 / SYM_ARROW_COUNT; arrow = SYM_ARROW_START + ((angle + interval / 2) / interval) % SYM_ARROW_COUNT; } backend->write(x, y, false, "%c%3.0f%c", arrow, v_length * 3.6, SYM_KMH); } void AP_OSD_Screen::draw_gspeed(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); Vector2f v = ahrs.groundspeed_vector(); backend->write(x, y, false, "G"); draw_speed_vector(x + 1, y, v, ahrs.yaw_sensor); } //Thanks to betaflight/inav for simple and clean artificial horizon visual design void AP_OSD_Screen::draw_horizon(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); float roll = ahrs.roll; float pitch = -ahrs.pitch; roll = constrain_float(roll, -ah_max_roll, ah_max_roll); pitch = constrain_float(pitch, -ah_max_pitch, ah_max_pitch); for (int dx = -4; dx <= 4; dx++) { float fy = dx * roll + pitch * ah_pitch_rad_to_char + 0.5f; int dy = floorf(fy); char c = (fy - dy) * SYM_AH_COUNT; //chars in font in reversed order c = SYM_AH_START + ((SYM_AH_COUNT - 1) - c); if (dy >= -4 && dy <= 4) { backend->write(x + dx, y - dy, false, "%c", c); } } backend->write(x-1,y, false, "%c%c%c", SYM_AH_CENTER_LINE_LEFT, SYM_AH_CENTER, SYM_AH_CENTER_LINE_RIGHT); } void AP_OSD_Screen::draw_home(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); Location loc; if (ahrs.get_position(loc) && ahrs.home_is_set()) { const Location &home_loc = ahrs.get_home(); float distance = get_distance(home_loc, loc); int32_t angle = wrap_360_cd(get_bearing_cd(loc, home_loc) - ahrs.yaw_sensor); int32_t interval = 36000 / SYM_ARROW_COUNT; if (distance < 2.0f) { //avoid fast rotating arrow at small distances angle = 0; } char arrow = SYM_ARROW_START + ((angle + interval / 2) / interval) % SYM_ARROW_COUNT; if (distance < 999.0f) { backend->write(x, y, false, "%c%c%3.0f%c", SYM_HOME, arrow, distance, SYM_M); } else if (distance < 9999.0f) { backend->write(x, y, false, "%c%c%1.1f%c", SYM_HOME, arrow, distance/1000, SYM_KM); } else { backend->write(x, y, false, "%c%c%3.0f%c", SYM_HOME, arrow, distance/1000, SYM_KM); } } else { backend->write(x, y, true, "%c", SYM_HOME); } } void AP_OSD_Screen::draw_heading(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); uint16_t yaw = ahrs.yaw_sensor / 100; backend->write(x, y, false, "%3d%c", yaw, SYM_DEGR); } void AP_OSD_Screen::draw_throttle(uint8_t x, uint8_t y) { backend->write(x, y, false, "%3d%c", gcs().get_hud_throttle(), SYM_PCNT); } //Thanks to betaflight/inav for simple and clean compass visual design void AP_OSD_Screen::draw_compass(uint8_t x, uint8_t y) { const int8_t total_sectors = 16; static const char compass_circle[total_sectors] = { SYM_HEADING_N, SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE, SYM_HEADING_E, SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE, SYM_HEADING_S, SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE, SYM_HEADING_W, SYM_HEADING_LINE, SYM_HEADING_DIVIDED_LINE, SYM_HEADING_LINE, }; AP_AHRS &ahrs = AP::ahrs(); int32_t yaw = ahrs.yaw_sensor; int32_t interval = 36000 / total_sectors; int8_t center_sector = ((yaw + interval / 2) / interval) % total_sectors; for (int8_t i = -4; i <= 4; i++) { int8_t sector = center_sector + i; sector = (sector + total_sectors) % total_sectors; backend->write(x + i, y, false, "%c", compass_circle[sector]); } } void AP_OSD_Screen::draw_wind(uint8_t x, uint8_t y) { AP_AHRS &ahrs = AP::ahrs(); Vector3f v = ahrs.wind_estimate(); backend->write(x, y, false, "%c", SYM_WIND); draw_speed_vector(x + 1, y, Vector2f(v.x, v.y), ahrs.yaw_sensor); } void AP_OSD_Screen::draw_aspeed(uint8_t x, uint8_t y) { float aspd = 0.0f; if (AP::ahrs().airspeed_estimate(&aspd)) { backend->write(x, y, false, "A%4.0f%c", aspd * 3.6, SYM_KMH); } } void AP_OSD_Screen::draw_vspeed(uint8_t x, uint8_t y) { Vector3f v; AP::ahrs().get_velocity_NED(v); float vspd = -v.z; char sym; if (vspd > 3.0f) { sym = SYM_UP_UP; } else if (vspd >=0.0f) { sym = SYM_UP; } else if (vspd >= -3.0f) { sym = SYM_DOWN; } else { sym = SYM_DOWN_DOWN; } vspd = fabsf(vspd); backend->write(x, y, false, "%c%2.0f%c", sym, vspd, SYM_MS); } #ifdef HAVE_AP_BLHELI_SUPPORT void AP_OSD_Screen::draw_blh_temp(uint8_t x, uint8_t y) { AP_BLHeli *blheli = AP_BLHeli::get_singleton(); if (blheli) { AP_BLHeli::telem_data td; blheli->get_telem_data(0, td); // first parameter is index into array of ESC's. Hardwire to zero (first) for now. // AP_BLHeli & blh = AP_BLHeli::AP_BLHeli(); uint8_t esc_temp = td.temperature; backend->write(x, y, false, "%3d%c", esc_temp, SYM_DEGREES_C); } } void AP_OSD_Screen::draw_blh_rpm(uint8_t x, uint8_t y) { AP_BLHeli *blheli = AP_BLHeli::get_singleton(); if (blheli) { AP_BLHeli::telem_data td; blheli->get_telem_data(0, td); // first parameter is index into array of ESC's. Hardwire to zero (first) for now. int esc_rpm = td.rpm * 14; // hard-wired assumption for now that motor has 14 poles, so multiply eRPM * 14 to get motor RPM. backend->write(x, y, false, "%5d RPM", esc_rpm); } } void AP_OSD_Screen::draw_blh_amps(uint8_t x, uint8_t y) { AP_BLHeli *blheli = AP_BLHeli::get_singleton(); if (blheli) { AP_BLHeli::telem_data td; blheli->get_telem_data(0, td); // first parameter is index into array of ESC's. Hardwire to zero (first) for now. float esc_amps = td.current; backend->write(x, y, false, "%4.1f%c", esc_amps, SYM_AMP); } } #endif //HAVE_AP_BLHELI_SUPPORT void AP_OSD_Screen::draw_gps_latitude(uint8_t x, uint8_t y) { AP_GPS & gps = AP::gps(); const Location &loc = gps.location(); // loc.lat and loc.lng int32_t dec_portion, frac_portion; int32_t abs_lat = labs(loc.lat); dec_portion = loc.lat / 10000000L; frac_portion = abs_lat - labs(dec_portion)*10000000UL; backend->write(x, y, false, "%c%3ld.%07ld", SYM_GPS_LAT, (long)dec_portion,(long)frac_portion); } void AP_OSD_Screen::draw_gps_longitude(uint8_t x, uint8_t y) { AP_GPS & gps = AP::gps(); const Location &loc = gps.location(); // loc.lat and loc.lng int32_t dec_portion, frac_portion; int32_t abs_lon = labs(loc.lng); dec_portion = loc.lng / 10000000L; frac_portion = abs_lon - labs(dec_portion)*10000000UL; backend->write(x, y, false, "%c%3ld.%07ld", SYM_GPS_LONG, (long)dec_portion,(long)frac_portion); } #define DRAW_SETTING(n) if (n.enabled) draw_ ## n(n.xpos, n.ypos) void AP_OSD_Screen::draw(void) { if (!enabled || !backend) { return; } //Note: draw order should be optimized. //Big and less important items should be drawn first, //so they will not overwrite more important ones. DRAW_SETTING(message); DRAW_SETTING(horizon); DRAW_SETTING(compass); DRAW_SETTING(altitude); DRAW_SETTING(bat_volt); DRAW_SETTING(rssi); DRAW_SETTING(current); DRAW_SETTING(batused); DRAW_SETTING(sats); DRAW_SETTING(fltmode); DRAW_SETTING(gspeed); DRAW_SETTING(aspeed); DRAW_SETTING(vspeed); DRAW_SETTING(throttle); DRAW_SETTING(heading); DRAW_SETTING(wind); DRAW_SETTING(home); #ifdef HAVE_AP_BLHELI_SUPPORT DRAW_SETTING(blh_temp); DRAW_SETTING(blh_rpm); DRAW_SETTING(blh_amps); #endif DRAW_SETTING(gps_latitude); DRAW_SETTING(gps_longitude); }