/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
simulator connection for morse simulator http://morse-simulator.github.io/
*/
#pragma once
#include
#ifndef HAL_SIM_MORSE_ENABLED
#define HAL_SIM_MORSE_ENABLED (CONFIG_HAL_BOARD == HAL_BOARD_SITL)
#endif
#if HAL_SIM_MORSE_ENABLED
#include
#include "SIM_Aircraft.h"
namespace SITL {
/*
simulation interface
*/
class Morse : public Aircraft {
public:
Morse(const char *frame_str);
/* update model by one time step */
void update(const struct sitl_input &input) override;
/* static object creator */
static Aircraft *create(const char *frame_str) {
return new Morse(frame_str);
}
private:
// loopback to convert inbound Morse lidar data into inbound mavlink msgs
const char *mavlink_loopback_address = "127.0.0.1";
const uint16_t mavlink_loopback_port = 5762;
SocketAPM mav_socket { false };
struct {
// socket to telem2 on aircraft
bool connected;
mavlink_message_t rxmsg;
mavlink_status_t status;
uint8_t seq;
} mavlink {};
void send_report(void);
uint32_t send_report_last_ms;
const char *morse_ip = "127.0.0.1";
// assume sensors are streamed on port 60000
uint16_t morse_sensors_port = 60000;
// assume we control vehicle on port 60001
uint16_t morse_control_port = 60001;
enum {
OUTPUT_ROVER_REGULAR=1,
OUTPUT_ROVER_SKID=2,
OUTPUT_QUAD=3,
OUTPUT_PWM=4
} output_type;
bool connect_sockets(void);
bool parse_sensors(const char *json);
bool sensors_receive(void);
void output_rover_regular(const struct sitl_input &input);
void output_rover_skid(const struct sitl_input &input);
void output_quad(const struct sitl_input &input);
void output_pwm(const struct sitl_input &input);
void report_FPS();
// buffer for parsing pose data in JSON format
uint8_t sensor_buffer[50000];
uint32_t sensor_buffer_len;
SocketAPM *sensors_sock;
SocketAPM *control_sock;
uint32_t no_data_counter;
uint32_t connect_counter;
double initial_time_s;
double last_time_s;
double extrapolated_s;
double average_frame_time_s;
uint64_t socket_frame_counter;
uint64_t last_socket_frame_counter;
uint64_t frame_counter;
double last_frame_count_s;
enum data_type {
DATA_FLOAT,
DATA_DOUBLE,
DATA_VECTOR3F,
DATA_VECTOR3F_ARRAY,
DATA_FLOAT_ARRAY,
};
struct {
double timestamp;
struct {
Vector3f angular_velocity;
Vector3f linear_acceleration;
Vector3f magnetic_field;
} imu;
struct {
float x, y, z;
} gps;
struct {
float roll, pitch, yaw;
} pose;
struct {
Vector3f world_linear_velocity;
} velocity;
struct {
struct vector3f_array points;
struct float_array ranges;
} scanner;
} state, last_state;
// table to aid parsing of JSON sensor data
struct keytable {
const char *section;
const char *key;
void *ptr;
enum data_type type;
} keytable[13] = {
{ "", "timestamp", &state.timestamp, DATA_DOUBLE },
{ ".imu", "angular_velocity", &state.imu.angular_velocity, DATA_VECTOR3F },
{ ".imu", "linear_acceleration", &state.imu.linear_acceleration, DATA_VECTOR3F },
{ ".imu", "magnetic_field", &state.imu.magnetic_field, DATA_VECTOR3F },
{ ".gps", "x", &state.gps.x, DATA_FLOAT },
{ ".gps", "y", &state.gps.y, DATA_FLOAT },
{ ".gps", "z", &state.gps.z, DATA_FLOAT },
{ ".pose", "roll", &state.pose.roll, DATA_FLOAT },
{ ".pose", "pitch", &state.pose.pitch, DATA_FLOAT },
{ ".pose", "yaw", &state.pose.yaw, DATA_FLOAT },
{ ".velocity", "world_linear_velocity", &state.velocity.world_linear_velocity, DATA_VECTOR3F },
{ ".scan", "point_list", &state.scanner.points, DATA_VECTOR3F_ARRAY },
{ ".scan", "range_list", &state.scanner.ranges, DATA_FLOAT_ARRAY },
};
};
} // namespace SITL
#endif // HAL_SIM_MORSE_ENABLED