/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include "AP_InertialSensor_BMI088.h" /* device registers, names follow datasheet conventions, with REGA_ prefix for accel, and REGG_ prefix for gyro */ #define REGA_CHIPID 0x00 #define REGA_ERR_REG 0x02 #define REGA_STATUS 0x03 #define REGA_X_LSB 0x12 #define REGA_INT_STATUS_1 0x1D #define REGA_TEMP_LSB 0x22 #define REGA_TEMP_MSB 0x23 #define REGA_CONF 0x40 #define REGA_RANGE 0x41 #define REGA_PWR_CONF 0x7C #define REGA_PWR_CTRL 0x7D #define REGA_SOFTRESET 0x7E #define REGA_FIFO_CONFIG0 0x48 #define REGA_FIFO_CONFIG1 0x49 #define REGA_FIFO_DOWNS 0x45 #define REGA_FIFO_DATA 0x26 #define REGA_FIFO_LEN0 0x24 #define REGA_FIFO_LEN1 0x25 #define REGG_CHIPID 0x00 #define REGA_RATE_X_LSB 0x02 #define REGG_INT_STATUS_1 0x0A #define REGG_INT_STATUS_2 0x0B #define REGG_INT_STATUS_3 0x0C #define REGG_FIFO_STATUS 0x0E #define REGG_RANGE 0x0F #define REGG_BW 0x10 #define REGG_LPM1 0x11 #define REGG_RATE_HBW 0x13 #define REGG_BGW_SOFTRESET 0x14 #define REGG_FIFO_CONFIG_1 0x3E #define REGG_FIFO_DATA 0x3F extern const AP_HAL::HAL& hal; AP_InertialSensor_BMI088::AP_InertialSensor_BMI088(AP_InertialSensor &imu, AP_HAL::OwnPtr _dev_accel, AP_HAL::OwnPtr _dev_gyro, enum Rotation _rotation) : AP_InertialSensor_Backend(imu) , dev_accel(std::move(_dev_accel)) , dev_gyro(std::move(_dev_gyro)) , rotation(_rotation) { } AP_InertialSensor_Backend * AP_InertialSensor_BMI088::probe(AP_InertialSensor &imu, AP_HAL::OwnPtr dev_accel, AP_HAL::OwnPtr dev_gyro, enum Rotation rotation) { if (!dev_accel || !dev_gyro) { return nullptr; } auto sensor = new AP_InertialSensor_BMI088(imu, std::move(dev_accel), std::move(dev_gyro), rotation); if (!sensor) { return nullptr; } if (!sensor->init()) { delete sensor; return nullptr; } return sensor; } void AP_InertialSensor_BMI088::start() { accel_instance = _imu.register_accel(1600, dev_accel->get_bus_id_devtype(DEVTYPE_INS_BMI088)); gyro_instance = _imu.register_gyro(2000, dev_gyro->get_bus_id_devtype(DEVTYPE_INS_BMI088)); // setup sensor rotations from probe() set_gyro_orientation(gyro_instance, rotation); set_accel_orientation(accel_instance, rotation); // setup callbacks dev_accel->register_periodic_callback(1000000UL / 1600, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_BMI088::read_fifo_accel, void)); dev_gyro->register_periodic_callback(1000000UL / 2000, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_BMI088::read_fifo_gyro, void)); } /* read from accelerometer registers, special SPI handling needed */ bool AP_InertialSensor_BMI088::read_accel_registers(uint8_t reg, uint8_t *data, uint8_t len) { // when on I2C we just read normally if (dev_accel->bus_type() != AP_HAL::Device::BUS_TYPE_SPI) { return dev_accel->read_registers(reg, data, len); } // for SPI we need to discard the first returned byte. See // datasheet for explanation uint8_t b[len+2]; b[0] = reg | 0x80; memset(&b[1], 0, len+1); if (!dev_accel->transfer(b, len+2, b, len+2)) { return false; } memcpy(data, &b[2], len); return true; } /* write to accel registers with retries. The SPI sensor may take several tries to correctly write a register */ bool AP_InertialSensor_BMI088::write_accel_register(uint8_t reg, uint8_t v) { for (uint8_t i=0; i<8; i++) { dev_accel->write_register(reg, v); uint8_t v2 = 0; if (read_accel_registers(reg, &v2, 1) && v2 == v) { return true; } } return false; } static const struct { uint8_t reg; uint8_t value; } accel_config[] = { { REGA_CONF, 0xAC }, // setup 24g range { REGA_RANGE, 0x03 }, // disable low-power mode { REGA_PWR_CONF, 0 }, { REGA_PWR_CTRL, 0x04 }, // setup FIFO for streaming X,Y,Z { REGA_FIFO_CONFIG0, 0x00 }, { REGA_FIFO_CONFIG1, 0x50 }, }; bool AP_InertialSensor_BMI088::setup_accel_config(void) { if (done_accel_config) { return true; } accel_config_count++; for (uint8_t i=0; iprintf("BMI088: accel config OK (%u tries)\n", (unsigned)accel_config_count); return true; } /* probe and initialise accelerometer */ bool AP_InertialSensor_BMI088::accel_init() { WITH_SEMAPHORE(dev_accel->get_semaphore()); uint8_t v; // dummy ready on accel ChipID to init accel (see section 3 of datasheet) read_accel_registers(REGA_CHIPID, &v, 1); if (!read_accel_registers(REGA_CHIPID, &v, 1) || v != 0x1E) { return false; } if (!setup_accel_config()) { hal.console->printf("BMI088: delaying accel config\n"); } hal.console->printf("BMI088: found accel\n"); return true; } /* probe and initialise gyro */ bool AP_InertialSensor_BMI088::gyro_init() { WITH_SEMAPHORE(dev_gyro->get_semaphore()); uint8_t v; if (!dev_gyro->read_registers(REGG_CHIPID, &v, 1) || v != 0x0F) { return false; } if (!dev_gyro->write_register(REGG_BGW_SOFTRESET, 0xB6)) { return false; } hal.scheduler->delay(10); dev_gyro->setup_checked_registers(5, 20); // setup 2000dps range if (!dev_gyro->write_register(REGG_RANGE, 0x00, true)) { return false; } // setup filter bandwidth 230Hz, no decimation if (!dev_gyro->write_register(REGG_BW, 0x81, true)) { return false; } // disable low-power mode if (!dev_gyro->write_register(REGG_LPM1, 0, true)) { return false; } // setup for filtered data if (!dev_gyro->write_register(REGG_RATE_HBW, 0x00, true)) { return false; } // setup FIFO for streaming X,Y,Z if (!dev_gyro->write_register(REGG_FIFO_CONFIG_1, 0x80, true)) { return false; } hal.console->printf("BMI088: found gyro\n"); return true; } bool AP_InertialSensor_BMI088::init() { dev_accel->set_read_flag(0x80); dev_gyro->set_read_flag(0x80); return accel_init() && gyro_init(); } /* read accel fifo */ void AP_InertialSensor_BMI088::read_fifo_accel(void) { if (!setup_accel_config()) { return; } uint8_t len[2]; if (!read_accel_registers(REGA_FIFO_LEN0, len, 2)) { _inc_accel_error_count(accel_instance); return; } uint16_t fifo_length = len[0] + (len[1]<<8); if (fifo_length & 0x8000) { // empty return; } // don't read more than 8 frames at a time if (fifo_length > 8*7) { fifo_length = 8*7; } if (fifo_length == 0) { return; } uint8_t data[fifo_length]; if (!read_accel_registers(REGA_FIFO_DATA, data, fifo_length)) { _inc_accel_error_count(accel_instance); return; } // assume configured for 24g range const float scale = (1.0/32768.0) * GRAVITY_MSS * 24.0; const uint8_t *p = &data[0]; while (fifo_length >= 7) { /* the fifo frames are variable length, with the frame type in the first byte */ uint8_t frame_len = 2; switch (p[0] & 0xFC) { case 0x84: { // accel frame frame_len = 7; const uint8_t *d = p+1; int16_t xyz[3] { int16_t(uint16_t(d[0] | (d[1]<<8))), int16_t(uint16_t(d[2] | (d[3]<<8))), int16_t(uint16_t(d[4] | (d[5]<<8)))}; Vector3f accel(xyz[0], xyz[1], xyz[2]); accel *= scale; _rotate_and_correct_accel(accel_instance, accel); _notify_new_accel_raw_sample(accel_instance, accel); break; } case 0x40: // skip frame frame_len = 2; break; case 0x44: // sensortime frame frame_len = 4; break; case 0x48: // fifo config frame frame_len = 2; break; case 0x50: // sample drop frame frame_len = 2; break; } p += frame_len; fifo_length -= frame_len; } if (temperature_counter++ == 100) { temperature_counter = 0; uint8_t tbuf[2]; if (!read_accel_registers(REGA_TEMP_LSB, tbuf, 2)) { _inc_accel_error_count(accel_instance); } else { uint16_t temp_uint11 = (tbuf[0]<<3) | (tbuf[1]>>5); int16_t temp_int11 = temp_uint11>1023?temp_uint11-2048:temp_uint11; float temp_degc = temp_int11 * 0.125f + 23; _publish_temperature(accel_instance, temp_degc); } } } /* read gyro fifo */ void AP_InertialSensor_BMI088::read_fifo_gyro(void) { uint8_t num_frames; if (!dev_gyro->read_registers(REGG_FIFO_STATUS, &num_frames, 1)) { _inc_gyro_error_count(gyro_instance); return; } num_frames &= 0x7F; // don't read more than 8 frames at a time if (num_frames > 8) { num_frames = 8; } if (num_frames == 0) { return; } uint8_t data[6*num_frames]; if (!dev_gyro->read_registers(REGG_FIFO_DATA, data, num_frames*6)) { _inc_gyro_error_count(gyro_instance); return; } // data is 16 bits with 2000dps range const float scale = radians(2000.0f) / 32767.0f; for (uint8_t i = 0; i < num_frames; i++) { const uint8_t *d = &data[i*6]; int16_t xyz[3] { int16_t(uint16_t(d[0] | d[1]<<8)), int16_t(uint16_t(d[2] | d[3]<<8)), int16_t(uint16_t(d[4] | d[5]<<8)) }; Vector3f gyro(xyz[0], xyz[1], xyz[2]); gyro *= scale; _rotate_and_correct_gyro(gyro_instance, gyro); _notify_new_gyro_raw_sample(gyro_instance, gyro); } if (!dev_gyro->check_next_register()) { _inc_gyro_error_count(gyro_instance); } } bool AP_InertialSensor_BMI088::update() { update_accel(accel_instance); update_gyro(gyro_instance); return true; }