/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "SRV_Channel/SRV_Channel.h" #include "AP_MotorsUGV.h" #include "Rover.h" extern const AP_HAL::HAL& hal; // parameters for the motor class const AP_Param::GroupInfo AP_MotorsUGV::var_info[] = { // @Param: PWM_TYPE // @DisplayName: Motor Output PWM type // @Description: This selects the output PWM type as regular PWM, OneShot, Brushed motor support using PWM (duty cycle) with separated direction signal, Brushed motor support with separate throttle and direction PWM (duty cyle) // @Values: 0:Normal,1:OneShot,2:OneShot125,3:BrushedWithRelay,4:BrushedBiPolar // @User: Advanced // @RebootRequired: True AP_GROUPINFO("PWM_TYPE", 1, AP_MotorsUGV, _pwm_type, PWM_TYPE_NORMAL), // @Param: PWM_FREQ // @DisplayName: Motor Output PWM freq for brushed motors // @Description: Motor Output PWM freq for brushed motors // @Units: kHz // @Range: 1 20 // @Increment: 1 // @User: Advanced // @RebootRequired: True AP_GROUPINFO("PWM_FREQ", 2, AP_MotorsUGV, _pwm_freq, 16), // @Param: SAFE_DISARM // @DisplayName: Motor PWM output disabled when disarmed // @Description: Disables motor PWM output when disarmed // @Values: 0:PWM enabled while disarmed, 1:PWM disabled while disarmed // @User: Advanced AP_GROUPINFO("SAFE_DISARM", 3, AP_MotorsUGV, _disarm_disable_pwm, 0), // @Param: THR_MIN // @DisplayName: Throttle minimum // @Description: Throttle minimum percentage the autopilot will apply. This is useful for handling a deadzone around low throttle and for preventing internal combustion motors cutting out during missions. // @Units: % // @Range: 0 20 // @Increment: 1 // @User: Standard AP_GROUPINFO("THR_MIN", 5, AP_MotorsUGV, _throttle_min, 0), // @Param: THR_MAX // @DisplayName: Throttle maximum // @Description: Throttle maximum percentage the autopilot will apply. This can be used to prevent overheating an ESC or motor on an electric rover // @Units: % // @Range: 30 100 // @Increment: 1 // @User: Standard AP_GROUPINFO("THR_MAX", 6, AP_MotorsUGV, _throttle_max, 100), // @Param: SLEWRATE // @DisplayName: Throttle slew rate // @Description: Throttle slew rate as a percentage of total range per second. A value of 100 allows the motor to change over its full range in one second. A value of zero disables the limit. Note some NiMH powered rovers require a lower setting of 40 to reduce current demand to avoid brownouts. // @Units: %/s // @Range: 0 1000 // @Increment: 1 // @User: Standard AP_GROUPINFO("SLEWRATE", 8, AP_MotorsUGV, _slew_rate, 100), // @Param: THST_EXPO // @DisplayName: Thrust Curve Expo // @Description: Thrust curve exponent (-1 to +1 with 0 being linear) // @Range: -1.0 1.0 // @User: Advanced AP_GROUPINFO("THST_EXPO", 9, AP_MotorsUGV, _thrust_curve_expo, 0.0f), // @Param: VEC_THR_BASE // @DisplayName: Vector thrust throttle base // @Description: Throttle level above which steering is scaled down when using vector thrust. zero to disable vectored thrust // @Units: % // @Range: 0 100 // @User: Advanced AP_GROUPINFO("VEC_THR_BASE", 10, AP_MotorsUGV, _vector_throttle_base, 0.0f), AP_GROUPEND }; AP_MotorsUGV::AP_MotorsUGV(AP_ServoRelayEvents &relayEvents) : _relayEvents(relayEvents) { AP_Param::setup_object_defaults(this, var_info); } void AP_MotorsUGV::init() { // setup servo ouput setup_servo_output(); // setup pwm type setup_pwm_type(); // set safety output setup_safety_output(); // sanity check parameters _vector_throttle_base = constrain_float(_vector_throttle_base, 0.0f, 100.0f); } // setup output in case of main CPU failure void AP_MotorsUGV::setup_safety_output() { if (_pwm_type == PWM_TYPE_BRUSHED_WITH_RELAY) { // set trim to min to set duty cycle range (0 - 100%) to servo range SRV_Channels::set_trim_to_min_for(SRV_Channel::k_throttle); SRV_Channels::set_trim_to_min_for(SRV_Channel::k_throttleLeft); SRV_Channels::set_trim_to_min_for(SRV_Channel::k_throttleRight); } if (_disarm_disable_pwm) { // throttle channels output zero pwm (i.e. no signal) SRV_Channels::set_safety_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_safety_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_safety_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } else { // throttle channels output trim values (because rovers will go backwards if set to MIN) SRV_Channels::set_safety_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); SRV_Channels::set_safety_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); SRV_Channels::set_safety_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); } // stop sending pwm if main CPU fails SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } // setup servo output ranges void AP_MotorsUGV::setup_servo_output() { // k_steering are limited to -45;45 degree SRV_Channels::set_angle(SRV_Channel::k_steering, SERVO_MAX); // k_throttle are in power percent so -100 ... 100 SRV_Channels::set_angle(SRV_Channel::k_throttle, 100); // skid steering left/right throttle as -1000 to 1000 values SRV_Channels::set_angle(SRV_Channel::k_throttleLeft, 1000); SRV_Channels::set_angle(SRV_Channel::k_throttleRight, 1000); } // set steering as a value from -4500 to +4500 void AP_MotorsUGV::set_steering(float steering) { _steering = constrain_float(steering, -4500.0f, 4500.0f); } // set throttle as a value from -100 to 100 void AP_MotorsUGV::set_throttle(float throttle) { // sanity check throttle min and max _throttle_min = constrain_int16(_throttle_min, 0, 20); _throttle_max = constrain_int16(_throttle_max, 30, 100); // check throttle is between -_throttle_max ~ +_throttle_max but outside -throttle_min ~ +throttle_min _throttle = constrain_float(throttle, -_throttle_max, _throttle_max); } /* work out if skid steering is available */ bool AP_MotorsUGV::have_skid_steering() const { if (SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft) && SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) { return true; } return false; } void AP_MotorsUGV::output(bool armed, float dt) { // soft-armed overrides passed in armed status if (!hal.util->get_soft_armed()) { armed = false; } // clear and set limits based on input (limit flags may be set again by output_regular or output_skid_steering methods) set_limits_from_input(armed, _steering, _throttle); // slew limit throttle slew_limit_throttle(dt); // output for regular steering/throttle style frames output_regular(armed, _steering, _throttle); // output for skid steering style frames output_skid_steering(armed, _steering, _throttle); // send values to the PWM timers for output SRV_Channels::calc_pwm(); SRV_Channels::cork(); SRV_Channels::output_ch_all(); SRV_Channels::push(); } // test steering or throttle output as a percentage of the total (range -100 to +100) // used in response to DO_MOTOR_TEST mavlink command bool AP_MotorsUGV::output_test_pct(motor_test_order motor_seq, float pct) { // check if the motor_seq is valid if (motor_seq > MOTOR_TEST_THROTTLE_RIGHT) { return false; } pct = constrain_float(pct, -100.0f, 100.0f); switch (motor_seq) { case MOTOR_TEST_THROTTLE: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttle)) { return false; } output_throttle(SRV_Channel::k_throttle, pct); break; } case MOTOR_TEST_STEERING: { if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) { return false; } SRV_Channels::set_output_scaled(SRV_Channel::k_steering, pct * 45.0f); break; } case MOTOR_TEST_THROTTLE_LEFT: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft)) { return false; } output_throttle(SRV_Channel::k_throttleLeft, pct); break; } case MOTOR_TEST_THROTTLE_RIGHT: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) { return false; } output_throttle(SRV_Channel::k_throttleRight, pct); break; } default: return false; } SRV_Channels::calc_pwm(); SRV_Channels::cork(); SRV_Channels::output_ch_all(); SRV_Channels::push(); return true; } // test steering or throttle output using a pwm value bool AP_MotorsUGV::output_test_pwm(motor_test_order motor_seq, float pwm) { // check if the motor_seq is valid if (motor_seq > MOTOR_TEST_THROTTLE_RIGHT) { return false; } switch (motor_seq) { case MOTOR_TEST_THROTTLE: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttle)) { return false; } SRV_Channels::set_output_pwm(SRV_Channel::k_throttle, pwm); break; } case MOTOR_TEST_STEERING: { if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) { return false; } SRV_Channels::set_output_pwm(SRV_Channel::k_steering, pwm); break; } case MOTOR_TEST_THROTTLE_LEFT: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft)) { return false; } SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, pwm); break; } case MOTOR_TEST_THROTTLE_RIGHT: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) { return false; } SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, pwm); break; } default: return false; } SRV_Channels::calc_pwm(); SRV_Channels::cork(); SRV_Channels::output_ch_all(); SRV_Channels::push(); return true; } // returns true if checks pass, false if they fail. report should be true to send text messages to GCS bool AP_MotorsUGV::pre_arm_check(bool report) const { // check if both regular and skid steering functions have been defined if (SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft) && SRV_Channels::function_assigned(SRV_Channel::k_throttleRight) && SRV_Channels::function_assigned(SRV_Channel::k_throttle) && SRV_Channels::function_assigned(SRV_Channel::k_steering)) { if (report) { gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: regular AND skid steering configured"); } return false; } // check if only one of skid-steering output has been configured if (SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft) != SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) { if (report) { gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: check skid steering config"); } return false; } // check if only one of throttle or steering outputs has been configured if (SRV_Channels::function_assigned(SRV_Channel::k_throttle) != SRV_Channels::function_assigned(SRV_Channel::k_steering)) { if (report) { gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: check steering and throttle config"); } return false; } return true; } // setup pwm output type void AP_MotorsUGV::setup_pwm_type() { switch (_pwm_type) { case PWM_TYPE_ONESHOT: hal.rcout->set_output_mode(0xFFFF, AP_HAL::RCOutput::MODE_PWM_ONESHOT); break; case PWM_TYPE_ONESHOT125: hal.rcout->set_output_mode(0xFFFF, AP_HAL::RCOutput::MODE_PWM_ONESHOT125); break; case PWM_TYPE_BRUSHED_WITH_RELAY: case PWM_TYPE_BRUSHED_BIPOLAR: hal.rcout->set_output_mode(0xFFFF, AP_HAL::RCOutput::MODE_PWM_BRUSHED); /* * Group 0: channels 0 1 * Group 1: channels 4 5 6 7 * Group 2: channels 2 3 */ // TODO : See if we can seperate frequency between groups hal.rcout->set_freq((1UL << 0), static_cast(_pwm_freq * 1000)); // Steering group hal.rcout->set_freq((1UL << 2), static_cast(_pwm_freq * 1000)); // Throttle group break; default: // do nothing break; } } // output to regular steering and throttle channels void AP_MotorsUGV::output_regular(bool armed, float steering, float throttle) { // output to throttle channels if (armed) { // vectored thrust handling if (have_vectored_thrust() && (fabsf(throttle) > _vector_throttle_base)) { // scale steering down linearly as throttle increases above _vector_throttle_base const float steering_scalar = constrain_float(_vector_throttle_base / fabsf(throttle), 0.0f, 1.0f); steering *= steering_scalar; } output_throttle(SRV_Channel::k_throttle, throttle); } else { // handle disarmed case if (_disarm_disable_pwm) { SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } else { SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); } } // always allow steering to move SRV_Channels::set_output_scaled(SRV_Channel::k_steering, steering); } // output to skid steering channels void AP_MotorsUGV::output_skid_steering(bool armed, float steering, float throttle) { if (!have_skid_steering()) { return; } // handle simpler disarmed case if (!armed) { if (_disarm_disable_pwm) { SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } else { SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); } return; } // skid steering mixer float steering_scaled = steering / 4500.0f; // steering scaled -1 to +1 float throttle_scaled = throttle / 100.0f; // throttle scaled -1 to +1 // apply constraints steering_scaled = constrain_float(steering_scaled, -1.0f, 1.0f); throttle_scaled = constrain_float(throttle_scaled, -1.0f, 1.0f); // check for saturation and scale back throttle and steering proportionally const float saturation_value = fabsf(steering_scaled) + fabsf(throttle_scaled); if (saturation_value > 1.0f) { steering_scaled = steering_scaled / saturation_value; throttle_scaled = throttle_scaled / saturation_value; } // reverse steering direction if throttle is negative to mimic regular rovers const float steering_dir = is_negative(throttle_scaled) ? -1.0f : 1.0f; // add in throttle and steering const float motor_left = throttle_scaled + (steering_dir * steering_scaled); const float motor_right = throttle_scaled - (steering_dir * steering_scaled); // send pwm value to each motor output_throttle(SRV_Channel::k_throttleLeft, 100.0f * motor_left); output_throttle(SRV_Channel::k_throttleRight, 100.0f * motor_right); } // output throttle value to main throttle channel, left throttle or right throttle. throttle should be scaled from -100 to 100 void AP_MotorsUGV::output_throttle(SRV_Channel::Aux_servo_function_t function, float throttle) { // sanity check servo function if (function != SRV_Channel::k_throttle && function != SRV_Channel::k_throttleLeft && function != SRV_Channel::k_throttleRight) { return; } // constrain and scale output throttle = get_scaled_throttle(throttle); // set relay if necessary if (_pwm_type == PWM_TYPE_BRUSHED_WITH_RELAY) { // find the output channel, if not found return const SRV_Channel *out_chan = SRV_Channels::get_channel_for(function); if (out_chan == nullptr) { return; } const int8_t reverse_multiplier = out_chan->get_reversed() ? -1 : 1; bool relay_high = is_negative(reverse_multiplier * throttle); switch (function) { case SRV_Channel::k_throttle: case SRV_Channel::k_throttleLeft: _relayEvents.do_set_relay(0, relay_high); break; case SRV_Channel::k_throttleRight: _relayEvents.do_set_relay(1, relay_high); break; default: // do nothing break; } // invert the output to always have positive value calculated by calc_pwm throttle = reverse_multiplier * fabsf(throttle); } // output to servo channel switch (function) { case SRV_Channel::k_throttle: SRV_Channels::set_output_scaled(function, throttle); break; case SRV_Channel::k_throttleLeft: case SRV_Channel::k_throttleRight: SRV_Channels::set_output_scaled(function, throttle * 10.0f); break; default: // do nothing break; } } // slew limit throttle for one iteration void AP_MotorsUGV::slew_limit_throttle(float dt) { if (_slew_rate > 0) { // slew throttle const float throttle_change_max = MAX(1.0f, (float)_slew_rate * dt); if (_throttle > _throttle_prev + throttle_change_max) { _throttle = _throttle_prev + throttle_change_max; limit.throttle_upper = true; } else if (_throttle < _throttle_prev - throttle_change_max) { _throttle = _throttle_prev - throttle_change_max; limit.throttle_lower = true; } } _throttle_prev = _throttle; } // set limits based on steering and throttle input void AP_MotorsUGV::set_limits_from_input(bool armed, float steering, float throttle) { // set limits based on inputs limit.steer_left = !armed || (steering <= -4500.0f); limit.steer_right = !armed || (steering >= 4500.0f); limit.throttle_lower = !armed || (throttle <= -_throttle_max); limit.throttle_upper = !armed || (throttle >= _throttle_max); } // scale a throttle using the _throttle_min and _thrust_curve_expo parameters. throttle should be in the range -100 to +100 float AP_MotorsUGV::get_scaled_throttle(float throttle) const { // exit immediately if throttle is zero if (is_zero(throttle)) { return throttle; } // scale using throttle_min if (_throttle_min > 0) { if (is_negative(throttle)) { throttle = -_throttle_min + (throttle * ((100.0f - _throttle_min) / 100.0f)); } else { throttle = _throttle_min + (throttle * ((100.0f - _throttle_min) / 100.0f)); } } // skip further scaling if thrust curve disabled or invalid if (is_zero(_thrust_curve_expo) || (_thrust_curve_expo > 1.0f) || (_thrust_curve_expo < -1.0f)) { return throttle; } // calculate scaler const float sign = (throttle < 0.0f) ? -1.0f : 1.0f; const float throttle_pct = constrain_float(throttle, -100.0f, 100.0f) / 100.0f; return 100.0f * sign * ((_thrust_curve_expo - 1.0f) + safe_sqrt((1.0f - _thrust_curve_expo) * (1.0f - _thrust_curve_expo) + 4.0f * _thrust_curve_expo * fabsf(throttle_pct))) / (2.0f * _thrust_curve_expo); }