/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // local variables float roll_in_filtered; // roll-in in filtered with RC_FEEL_RP parameter float pitch_in_filtered; // pitch-in filtered with RC_FEEL_RP parameter static void reset_roll_pitch_in_filters(int16_t roll_in, int16_t pitch_in) { roll_in_filtered = constrain_int16(roll_in, -ROLL_PITCH_INPUT_MAX, ROLL_PITCH_INPUT_MAX); pitch_in_filtered = constrain_int16(pitch_in, -ROLL_PITCH_INPUT_MAX, ROLL_PITCH_INPUT_MAX); } // get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle // returns desired angle in centi-degrees static void get_pilot_desired_lean_angles(int16_t roll_in, int16_t pitch_in, int16_t &roll_out, int16_t &pitch_out) { static float _scaler = 1.0; static int16_t _angle_max = 0; // range check the input roll_in = constrain_int16(roll_in, -ROLL_PITCH_INPUT_MAX, ROLL_PITCH_INPUT_MAX); pitch_in = constrain_int16(pitch_in, -ROLL_PITCH_INPUT_MAX, ROLL_PITCH_INPUT_MAX); // filter input for feel if (g.rc_feel_rp >= RC_FEEL_RP_VERY_CRISP) { // no filtering required roll_in_filtered = roll_in; pitch_in_filtered = pitch_in; }else{ float filter_gain; if (g.rc_feel_rp >= RC_FEEL_RP_CRISP) { filter_gain = 0.5; } else if(g.rc_feel_rp >= RC_FEEL_RP_MEDIUM) { filter_gain = 0.3; } else if(g.rc_feel_rp >= RC_FEEL_RP_SOFT) { filter_gain = 0.05; } else { // must be RC_FEEL_RP_VERY_SOFT filter_gain = 0.02; } roll_in_filtered = roll_in_filtered * (1.0 - filter_gain) + (float)roll_in * filter_gain; pitch_in_filtered = pitch_in_filtered * (1.0 - filter_gain) + (float)pitch_in * filter_gain; } // return filtered roll if no scaling required if (aparm.angle_max == ROLL_PITCH_INPUT_MAX) { roll_out = (int16_t)roll_in_filtered; pitch_out = (int16_t)pitch_in_filtered; return; } // check if angle_max has been updated and redo scaler if (aparm.angle_max != _angle_max) { _angle_max = aparm.angle_max; _scaler = (float)aparm.angle_max/(float)ROLL_PITCH_INPUT_MAX; } // convert pilot input to lean angle roll_out = (int16_t)(roll_in_filtered * _scaler); pitch_out = (int16_t)(pitch_in_filtered * _scaler); } static void get_stabilize_roll(int32_t target_angle) { // angle error target_angle = wrap_180_cd(target_angle - ahrs.roll_sensor); // limit the error we're feeding to the PID target_angle = constrain_int32(target_angle, -aparm.angle_max, aparm.angle_max); // convert to desired rate int32_t target_rate = g.pi_stabilize_roll.kP() * target_angle; // constrain the target rate if (!ap.disable_stab_rate_limit) { target_rate = constrain_int32(target_rate, -g.angle_rate_max, g.angle_rate_max); } // set targets for rate controller set_roll_rate_target(target_rate, EARTH_FRAME); } static void get_stabilize_pitch(int32_t target_angle) { // angle error target_angle = wrap_180_cd(target_angle - ahrs.pitch_sensor); // limit the error we're feeding to the PID target_angle = constrain_int32(target_angle, -aparm.angle_max, aparm.angle_max); // convert to desired rate int32_t target_rate = g.pi_stabilize_pitch.kP() * target_angle; // constrain the target rate if (!ap.disable_stab_rate_limit) { target_rate = constrain_int32(target_rate, -g.angle_rate_max, g.angle_rate_max); } // set targets for rate controller set_pitch_rate_target(target_rate, EARTH_FRAME); } static void get_stabilize_yaw(int32_t target_angle) { int32_t target_rate; int32_t angle_error; // angle error angle_error = wrap_180_cd(target_angle - ahrs.yaw_sensor); // limit the error we're feeding to the PID angle_error = constrain_int32(angle_error, -4500, 4500); // convert angle error to desired Rate: target_rate = g.pi_stabilize_yaw.kP() * angle_error; // do not use rate controllers for helicotpers with external gyros #if FRAME_CONFIG == HELI_FRAME if(motors.tail_type() == AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) { g.rc_4.servo_out = constrain_int32(target_rate, -4500, 4500); } #endif // set targets for rate controller set_yaw_rate_target(target_rate, EARTH_FRAME); } // get_acro_level_rates - calculate earth frame rate corrections to pull the copter back to level while in ACRO mode static void get_acro_level_rates() { // zero earth frame leveling if trainer is disabled if (g.acro_trainer == ACRO_TRAINER_DISABLED) { set_roll_rate_target(0, BODY_EARTH_FRAME); set_pitch_rate_target(0, BODY_EARTH_FRAME); set_yaw_rate_target(0, BODY_EARTH_FRAME); return; } // Calculate trainer mode earth frame rate command for roll int32_t roll_angle = wrap_180_cd(ahrs.roll_sensor); int32_t target_rate = 0; if (g.acro_trainer == ACRO_TRAINER_LIMITED) { if (roll_angle > aparm.angle_max){ target_rate = g.pi_stabilize_roll.get_p(aparm.angle_max-roll_angle); }else if (roll_angle < -aparm.angle_max) { target_rate = g.pi_stabilize_roll.get_p(-aparm.angle_max-roll_angle); } } roll_angle = constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE); target_rate -= roll_angle * g.acro_balance_roll; // add earth frame targets for roll rate controller set_roll_rate_target(target_rate, BODY_EARTH_FRAME); // Calculate trainer mode earth frame rate command for pitch int32_t pitch_angle = wrap_180_cd(ahrs.pitch_sensor); target_rate = 0; if (g.acro_trainer == ACRO_TRAINER_LIMITED) { if (pitch_angle > aparm.angle_max){ target_rate = g.pi_stabilize_pitch.get_p(aparm.angle_max-pitch_angle); }else if (pitch_angle < -aparm.angle_max) { target_rate = g.pi_stabilize_pitch.get_p(-aparm.angle_max-pitch_angle); } } pitch_angle = constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE); target_rate -= pitch_angle * g.acro_balance_pitch; // add earth frame targets for pitch rate controller set_pitch_rate_target(target_rate, BODY_EARTH_FRAME); // add earth frame targets for yaw rate controller set_yaw_rate_target(0, BODY_EARTH_FRAME); } // Roll with rate input and stabilized in the body frame static void get_roll_rate_stabilized_bf(int32_t stick_angle) { static float angle_error = 0; // convert the input to the desired body frame roll rate int32_t rate_request = stick_angle * g.acro_rp_p; if (g.acro_trainer == ACRO_TRAINER_LIMITED) { rate_request += acro_roll_rate; }else{ // Scale pitch leveling by stick input acro_roll_rate = (float)acro_roll_rate*acro_level_mix; // Calculate rate limit to prevent change of rate through inverted int32_t rate_limit = labs(labs(rate_request)-labs(acro_roll_rate)); rate_request += acro_roll_rate; rate_request = constrain_int32(rate_request, -rate_limit, rate_limit); } // add automatic correction int32_t rate_correction = g.pi_stabilize_roll.get_p(angle_error); // set body frame targets for rate controller set_roll_rate_target(rate_request+rate_correction, BODY_FRAME); // Calculate integrated body frame rate error angle_error += (rate_request - (omega.x * DEGX100)) * G_Dt; // don't let angle error grow too large angle_error = constrain_float(angle_error, -MAX_ROLL_OVERSHOOT, MAX_ROLL_OVERSHOOT); #if FRAME_CONFIG == HELI_FRAME if (!motors.motor_runup_complete()) { angle_error = 0; } #else if (!motors.armed() || g.rc_3.servo_out == 0) { angle_error = 0; } #endif // HELI_FRAME } // Pitch with rate input and stabilized in the body frame static void get_pitch_rate_stabilized_bf(int32_t stick_angle) { static float angle_error = 0; // convert the input to the desired body frame pitch rate int32_t rate_request = stick_angle * g.acro_rp_p; if (g.acro_trainer == ACRO_TRAINER_LIMITED) { rate_request += acro_pitch_rate; }else{ // Scale pitch leveling by stick input acro_pitch_rate = (float)acro_pitch_rate*acro_level_mix; // Calculate rate limit to prevent change of rate through inverted int32_t rate_limit = labs(labs(rate_request)-labs(acro_pitch_rate)); rate_request += acro_pitch_rate; rate_request = constrain_int32(rate_request, -rate_limit, rate_limit); } // add automatic correction int32_t rate_correction = g.pi_stabilize_pitch.get_p(angle_error); // set body frame targets for rate controller set_pitch_rate_target(rate_request+rate_correction, BODY_FRAME); // Calculate integrated body frame rate error angle_error += (rate_request - (omega.y * DEGX100)) * G_Dt; // don't let angle error grow too large angle_error = constrain_float(angle_error, -MAX_PITCH_OVERSHOOT, MAX_PITCH_OVERSHOOT); #if FRAME_CONFIG == HELI_FRAME if (!motors.motor_runup_complete()) { angle_error = 0; } #else if (!motors.armed() || g.rc_3.servo_out == 0) { angle_error = 0; } #endif // HELI_FRAME } // Yaw with rate input and stabilized in the body frame static void get_yaw_rate_stabilized_bf(int32_t stick_angle) { static float angle_error = 0; // convert the input to the desired body frame yaw rate int32_t rate_request = stick_angle * g.acro_yaw_p; if (g.acro_trainer == ACRO_TRAINER_LIMITED) { rate_request += acro_yaw_rate; }else{ // Scale pitch leveling by stick input acro_yaw_rate = (float)acro_yaw_rate*acro_level_mix; // Calculate rate limit to prevent change of rate through inverted int32_t rate_limit = labs(labs(rate_request)-labs(acro_yaw_rate)); rate_request += acro_yaw_rate; rate_request = constrain_int32(rate_request, -rate_limit, rate_limit); } // add automatic correction int32_t rate_correction = g.pi_stabilize_yaw.get_p(angle_error); // set body frame targets for rate controller set_yaw_rate_target(rate_request+rate_correction, BODY_FRAME); // Calculate integrated body frame rate error angle_error += (rate_request - (omega.z * DEGX100)) * G_Dt; // don't let angle error grow too large angle_error = constrain_float(angle_error, -MAX_YAW_OVERSHOOT, MAX_YAW_OVERSHOOT); #if FRAME_CONFIG == HELI_FRAME if (!motors.motor_runup_complete()) { angle_error = 0; } #else if (!motors.armed() || g.rc_3.servo_out == 0) { angle_error = 0; } #endif // HELI_FRAME } // Roll with rate input and stabilized in the earth frame static void get_roll_rate_stabilized_ef(int32_t stick_angle) { int32_t angle_error = 0; // convert the input to the desired roll rate int32_t target_rate = stick_angle * g.acro_rp_p - (acro_roll * g.acro_balance_roll); // convert the input to the desired roll rate acro_roll += target_rate * G_Dt; acro_roll = wrap_180_cd(acro_roll); // ensure that we don't reach gimbal lock if (labs(acro_roll) > aparm.angle_max) { acro_roll = constrain_int32(acro_roll, -aparm.angle_max, aparm.angle_max); angle_error = wrap_180_cd(acro_roll - ahrs.roll_sensor); } else { // angle error with maximum of +- max_angle_overshoot angle_error = wrap_180_cd(acro_roll - ahrs.roll_sensor); angle_error = constrain_int32(angle_error, -MAX_ROLL_OVERSHOOT, MAX_ROLL_OVERSHOOT); } #if FRAME_CONFIG == HELI_FRAME if (!motors.motor_runup_complete()) { angle_error = 0; } #else // reset target angle to current angle if motors not spinning if (!motors.armed() || g.rc_3.servo_out == 0) { angle_error = 0; } #endif // HELI_FRAME // update acro_roll to be within max_angle_overshoot of our current heading acro_roll = wrap_180_cd(angle_error + ahrs.roll_sensor); // set earth frame targets for rate controller set_roll_rate_target(g.pi_stabilize_roll.get_p(angle_error) + target_rate, EARTH_FRAME); } // Pitch with rate input and stabilized in the earth frame static void get_pitch_rate_stabilized_ef(int32_t stick_angle) { int32_t angle_error = 0; // convert the input to the desired pitch rate int32_t target_rate = stick_angle * g.acro_rp_p - (acro_pitch * g.acro_balance_pitch); // convert the input to the desired pitch rate acro_pitch += target_rate * G_Dt; acro_pitch = wrap_180_cd(acro_pitch); // ensure that we don't reach gimbal lock if (labs(acro_pitch) > aparm.angle_max) { acro_pitch = constrain_int32(acro_pitch, -aparm.angle_max, aparm.angle_max); angle_error = wrap_180_cd(acro_pitch - ahrs.pitch_sensor); } else { // angle error with maximum of +- max_angle_overshoot angle_error = wrap_180_cd(acro_pitch - ahrs.pitch_sensor); angle_error = constrain_int32(angle_error, -MAX_PITCH_OVERSHOOT, MAX_PITCH_OVERSHOOT); } #if FRAME_CONFIG == HELI_FRAME if (!motors.motor_runup_complete()) { angle_error = 0; } #else // reset target angle to current angle if motors not spinning if (!motors.armed() || g.rc_3.servo_out == 0) { angle_error = 0; } #endif // HELI_FRAME // update acro_pitch to be within max_angle_overshoot of our current heading acro_pitch = wrap_180_cd(angle_error + ahrs.pitch_sensor); // set earth frame targets for rate controller set_pitch_rate_target(g.pi_stabilize_pitch.get_p(angle_error) + target_rate, EARTH_FRAME); } // Yaw with rate input and stabilized in the earth frame static void get_yaw_rate_stabilized_ef(int32_t stick_angle) { int32_t angle_error = 0; // convert the input to the desired yaw rate int32_t target_rate = stick_angle * g.acro_yaw_p; // convert the input to the desired yaw rate control_yaw += target_rate * G_Dt; control_yaw = wrap_360_cd(control_yaw); // calculate difference between desired heading and current heading angle_error = wrap_180_cd(control_yaw - ahrs.yaw_sensor); // limit the maximum overshoot angle_error = constrain_int32(angle_error, -MAX_YAW_OVERSHOOT, MAX_YAW_OVERSHOOT); #if FRAME_CONFIG == HELI_FRAME if (!motors.motor_runup_complete()) { angle_error = 0; } #else // reset target angle to current heading if motors not spinning if (!motors.armed() || g.rc_3.servo_out == 0) { angle_error = 0; } #endif // HELI_FRAME // update control_yaw to be within max_angle_overshoot of our current heading control_yaw = wrap_360_cd(angle_error + ahrs.yaw_sensor); // set earth frame targets for rate controller set_yaw_rate_target(g.pi_stabilize_yaw.get_p(angle_error)+target_rate, EARTH_FRAME); } // set_roll_rate_target - to be called by upper controllers to set roll rate targets in the earth frame void set_roll_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { rate_targets_frame = earth_or_body_frame; if( earth_or_body_frame == BODY_FRAME ) { roll_rate_target_bf = desired_rate; }else{ roll_rate_target_ef = desired_rate; } } // set_pitch_rate_target - to be called by upper controllers to set pitch rate targets in the earth frame void set_pitch_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { rate_targets_frame = earth_or_body_frame; if( earth_or_body_frame == BODY_FRAME ) { pitch_rate_target_bf = desired_rate; }else{ pitch_rate_target_ef = desired_rate; } } // set_yaw_rate_target - to be called by upper controllers to set yaw rate targets in the earth frame void set_yaw_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) { rate_targets_frame = earth_or_body_frame; if( earth_or_body_frame == BODY_FRAME ) { yaw_rate_target_bf = desired_rate; }else{ yaw_rate_target_ef = desired_rate; } } // update_rate_contoller_targets - converts earth frame rates to body frame rates for rate controllers void update_rate_contoller_targets() { if( rate_targets_frame == EARTH_FRAME ) { // convert earth frame rates to body frame rates roll_rate_target_bf = roll_rate_target_ef - ahrs.sin_pitch() * yaw_rate_target_ef; pitch_rate_target_bf = ahrs.cos_roll() * pitch_rate_target_ef + ahrs.sin_roll() * ahrs.cos_pitch() * yaw_rate_target_ef; yaw_rate_target_bf = ahrs.cos_pitch() * ahrs.cos_roll() * yaw_rate_target_ef - ahrs.sin_roll() * pitch_rate_target_ef; }else if( rate_targets_frame == BODY_EARTH_FRAME ) { // add converted earth frame rates to body frame rates acro_roll_rate = roll_rate_target_ef - ahrs.sin_pitch() * yaw_rate_target_ef; acro_pitch_rate = ahrs.cos_roll() * pitch_rate_target_ef + ahrs.sin_roll() * ahrs.cos_pitch() * yaw_rate_target_ef; acro_yaw_rate = ahrs.cos_pitch() * ahrs.cos_roll() * yaw_rate_target_ef - ahrs.sin_roll() * pitch_rate_target_ef; } } // run roll, pitch and yaw rate controllers and send output to motors // targets for these controllers comes from stabilize controllers void run_rate_controllers() { #if FRAME_CONFIG == HELI_FRAME // convert desired roll and pitch rate to roll and pitch swash angles heli_integrated_swash_controller(roll_rate_target_bf, pitch_rate_target_bf); // helicopters only use rate controllers for yaw and only when not using an external gyro if(motors.tail_type() != AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) { g.rc_4.servo_out = get_heli_rate_yaw(yaw_rate_target_bf); }else{ // do not use rate controllers for helicotpers with external gyros g.rc_4.servo_out = constrain_int32(yaw_rate_target_bf, -4500, 4500); } #else // call rate controllers g.rc_1.servo_out = get_rate_roll(roll_rate_target_bf); g.rc_2.servo_out = get_rate_pitch(pitch_rate_target_bf); g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf); #endif // run throttle controller if accel based throttle controller is enabled and active (active means it has been given a target) if( throttle_accel_controller_active ) { set_throttle_out(get_throttle_accel(throttle_accel_target_ef), true); } } #if FRAME_CONFIG != HELI_FRAME static int16_t get_rate_roll(int32_t target_rate) { int32_t p,i,d; // used to capture pid values for logging int32_t current_rate; // this iteration's rate int32_t rate_error; // simply target_rate - current_rate int32_t output; // output from pid controller // get current rate current_rate = (omega.x * DEGX100); // call pid controller rate_error = target_rate - current_rate; p = g.pid_rate_roll.get_p(rate_error); // get i term i = g.pid_rate_roll.get_integrator(); // update i term as long as we haven't breached the limits or the I term will certainly reduce if (!motors.limit.roll_pitch || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) { i = g.pid_rate_roll.get_i(rate_error, G_Dt); } d = g.pid_rate_roll.get_d(rate_error, G_Dt); output = p + i + d; // constrain output output = constrain_int32(output, -5000, 5000); // output control return output; } static int16_t get_rate_pitch(int32_t target_rate) { int32_t p,i,d; // used to capture pid values for logging int32_t current_rate; // this iteration's rate int32_t rate_error; // simply target_rate - current_rate int32_t output; // output from pid controller // get current rate current_rate = (omega.y * DEGX100); // call pid controller rate_error = target_rate - current_rate; p = g.pid_rate_pitch.get_p(rate_error); // get i term i = g.pid_rate_pitch.get_integrator(); // update i term as long as we haven't breached the limits or the I term will certainly reduce if (!motors.limit.roll_pitch || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) { i = g.pid_rate_pitch.get_i(rate_error, G_Dt); } d = g.pid_rate_pitch.get_d(rate_error, G_Dt); output = p + i + d; // constrain output output = constrain_int32(output, -5000, 5000); // output control return output; } static int16_t get_rate_yaw(int32_t target_rate) { int32_t p,i,d; // used to capture pid values for logging int32_t rate_error; int32_t output; // rate control rate_error = target_rate - (omega.z * DEGX100); // separately calculate p, i, d values for logging p = g.pid_rate_yaw.get_p(rate_error); // get i term i = g.pid_rate_yaw.get_integrator(); // update i term as long as we haven't breached the limits or the I term will certainly reduce if (!motors.limit.yaw || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) { i = g.pid_rate_yaw.get_i(rate_error, G_Dt); } // get d value d = g.pid_rate_yaw.get_d(rate_error, G_Dt); output = p+i+d; output = constrain_int32(output, -4500, 4500); // constrain output return output; } #endif // !HELI_FRAME // calculate modified roll/pitch depending upon optical flow calculated position static int32_t get_of_roll(int32_t input_roll) { #if OPTFLOW == ENABLED static float tot_x_cm = 0; // total distance from target static uint32_t last_of_roll_update = 0; int32_t new_roll = 0; int32_t p,i,d; // check if new optflow data available if( optflow.last_update != last_of_roll_update) { last_of_roll_update = optflow.last_update; // add new distance moved tot_x_cm += optflow.x_cm; // only stop roll if caller isn't modifying roll if( input_roll == 0 && current_loc.alt < 1500) { p = g.pid_optflow_roll.get_p(-tot_x_cm); i = g.pid_optflow_roll.get_i(-tot_x_cm,1.0f); // we could use the last update time to calculate the time change d = g.pid_optflow_roll.get_d(-tot_x_cm,1.0f); new_roll = p+i+d; }else{ g.pid_optflow_roll.reset_I(); tot_x_cm = 0; p = 0; // for logging i = 0; d = 0; } // limit amount of change and maximum angle of_roll = constrain_int32(new_roll, (of_roll-20), (of_roll+20)); } // limit max angle of_roll = constrain_int32(of_roll, -1000, 1000); return input_roll+of_roll; #else return input_roll; #endif } static int32_t get_of_pitch(int32_t input_pitch) { #if OPTFLOW == ENABLED static float tot_y_cm = 0; // total distance from target static uint32_t last_of_pitch_update = 0; int32_t new_pitch = 0; int32_t p,i,d; // check if new optflow data available if( optflow.last_update != last_of_pitch_update ) { last_of_pitch_update = optflow.last_update; // add new distance moved tot_y_cm += optflow.y_cm; // only stop roll if caller isn't modifying pitch if( input_pitch == 0 && current_loc.alt < 1500 ) { p = g.pid_optflow_pitch.get_p(tot_y_cm); i = g.pid_optflow_pitch.get_i(tot_y_cm, 1.0f); // we could use the last update time to calculate the time change d = g.pid_optflow_pitch.get_d(tot_y_cm, 1.0f); new_pitch = p + i + d; }else{ tot_y_cm = 0; g.pid_optflow_pitch.reset_I(); p = 0; // for logging i = 0; d = 0; } // limit amount of change of_pitch = constrain_int32(new_pitch, (of_pitch-20), (of_pitch+20)); } // limit max angle of_pitch = constrain_int32(of_pitch, -1000, 1000); return input_pitch+of_pitch; #else return input_pitch; #endif } /************************************************************* * yaw controllers *************************************************************/ // get_look_at_yaw - updates bearing to look at center of circle or do a panorama // should be called at 100hz static void get_circle_yaw() { static uint8_t look_at_yaw_counter = 0; // used to reduce update rate to 10hz // if circle radius is zero do panorama if( g.circle_radius == 0 ) { // slew yaw towards circle angle control_yaw = get_yaw_slew(control_yaw, ToDeg(circle_angle)*100, AUTO_YAW_SLEW_RATE); }else{ look_at_yaw_counter++; if( look_at_yaw_counter >= 10 ) { look_at_yaw_counter = 0; yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), yaw_look_at_WP); } // slew yaw control_yaw = get_yaw_slew(control_yaw, yaw_look_at_WP_bearing, AUTO_YAW_SLEW_RATE); } // call stabilize yaw controller get_stabilize_yaw(control_yaw); } // get_look_at_yaw - updates bearing to location held in look_at_yaw_WP and calls stabilize yaw controller // should be called at 100hz static void get_look_at_yaw() { static uint8_t look_at_yaw_counter = 0; // used to reduce update rate to 10hz look_at_yaw_counter++; if( look_at_yaw_counter >= 10 ) { look_at_yaw_counter = 0; yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), yaw_look_at_WP); } // slew yaw and call stabilize controller control_yaw = get_yaw_slew(control_yaw, yaw_look_at_WP_bearing, AUTO_YAW_SLEW_RATE); get_stabilize_yaw(control_yaw); } static void get_look_ahead_yaw(int16_t pilot_yaw) { // Commanded Yaw to automatically look ahead. if (g_gps->fix && g_gps->ground_speed_cm > YAW_LOOK_AHEAD_MIN_SPEED) { control_yaw = get_yaw_slew(control_yaw, g_gps->ground_course_cd, AUTO_YAW_SLEW_RATE); get_stabilize_yaw(wrap_360_cd(control_yaw + pilot_yaw)); // Allow pilot to "skid" around corners up to 45 degrees }else{ control_yaw += pilot_yaw * g.acro_yaw_p * G_Dt; control_yaw = wrap_360_cd(control_yaw); get_stabilize_yaw(control_yaw); } } /************************************************************* * throttle control ****************************************************************/ // update_throttle_cruise - update throttle cruise if necessary static void update_throttle_cruise(int16_t throttle) { // ensure throttle_avg has been initialised if( throttle_avg == 0 ) { throttle_avg = g.throttle_cruise; } // calc average throttle if we are in a level hover if (throttle > g.throttle_min && abs(climb_rate) < 60 && labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) { throttle_avg = throttle_avg * 0.99f + (float)throttle * 0.01f; g.throttle_cruise = throttle_avg; } } #if FRAME_CONFIG == HELI_FRAME // get_angle_boost - returns a throttle including compensation for roll/pitch angle // throttle value should be 0 ~ 1000 // for traditional helicopters static int16_t get_angle_boost(int16_t throttle) { float angle_boost_factor = ahrs.cos_pitch() * ahrs.cos_roll(); angle_boost_factor = 1.0f - constrain_float(angle_boost_factor, .5f, 1.0f); int16_t throttle_above_mid = max(throttle - motors.get_collective_mid(),0); // to allow logging of angle boost angle_boost = throttle_above_mid*angle_boost_factor; return throttle + angle_boost; } #else // all multicopters // get_angle_boost - returns a throttle including compensation for roll/pitch angle // throttle value should be 0 ~ 1000 static int16_t get_angle_boost(int16_t throttle) { float temp = ahrs.cos_pitch() * ahrs.cos_roll(); int16_t throttle_out; temp = constrain_float(temp, 0.5f, 1.0f); // reduce throttle if we go inverted temp = constrain_float(9000-max(labs(ahrs.roll_sensor),labs(ahrs.pitch_sensor)), 0, 3000) / (3000 * temp); // apply scale and constrain throttle throttle_out = constrain_float((float)(throttle-g.throttle_min) * temp + g.throttle_min, g.throttle_min, 1000); // to allow logging of angle boost angle_boost = throttle_out - throttle; return throttle_out; } #endif // FRAME_CONFIG == HELI_FRAME // set_throttle_out - to be called by upper throttle controllers when they wish to provide throttle output directly to motors // provide 0 to cut motors void set_throttle_out( int16_t throttle_out, bool apply_angle_boost ) { if( apply_angle_boost ) { g.rc_3.servo_out = get_angle_boost(throttle_out); }else{ g.rc_3.servo_out = throttle_out; // clear angle_boost for logging purposes angle_boost = 0; } // update compass with throttle value compass.set_throttle((float)g.rc_3.servo_out/1000.0f); } // set_throttle_accel_target - to be called by upper throttle controllers to set desired vertical acceleration in earth frame void set_throttle_accel_target( int16_t desired_acceleration ) { throttle_accel_target_ef = desired_acceleration; throttle_accel_controller_active = true; } // disable_throttle_accel - disables the accel based throttle controller // it will be re-enasbled on the next set_throttle_accel_target // required when we wish to set motors to zero when pilot inputs zero throttle void throttle_accel_deactivate() { throttle_accel_controller_active = false; } // set_throttle_takeoff - allows parents to tell throttle controller we are taking off so I terms can be cleared static void set_throttle_takeoff() { // set alt target controller_desired_alt = current_loc.alt + ALT_HOLD_TAKEOFF_JUMP; // clear i term from acceleration controller if (g.pid_throttle_accel.get_integrator() < 0) { g.pid_throttle_accel.reset_I(); } // tell motors to do a slow start motors.slow_start(true); } // get_throttle_accel - accelerometer based throttle controller // returns an actual throttle output (0 ~ 1000) to be sent to the motors static int16_t get_throttle_accel(int16_t z_target_accel) { static float z_accel_error = 0; // The acceleration error in cm. static uint32_t last_call_ms = 0; // the last time this controller was called int32_t p,i,d; // used to capture pid values for logging int16_t output; float z_accel_meas; uint32_t now = millis(); // Calculate Earth Frame Z acceleration z_accel_meas = -(ahrs.get_accel_ef().z + GRAVITY_MSS) * 100; // reset target altitude if this controller has just been engaged if( now - last_call_ms > 100 ) { // Reset Filter z_accel_error = 0; } else { // calculate accel error and Filter with fc = 2 Hz z_accel_error = z_accel_error + 0.11164f * (constrain_float(z_target_accel - z_accel_meas, -32000, 32000) - z_accel_error); } last_call_ms = now; // separately calculate p, i, d values for logging p = g.pid_throttle_accel.get_p(z_accel_error); // get i term i = g.pid_throttle_accel.get_integrator(); // update i term as long as we haven't breached the limits or the I term will certainly reduce if ((!motors.limit.throttle_lower && !motors.limit.throttle_upper) || (i>0&&z_accel_error<0) || (i<0&&z_accel_error>0)) { i = g.pid_throttle_accel.get_i(z_accel_error, .01f); } d = g.pid_throttle_accel.get_d(z_accel_error, .01f); output = constrain_float(p+i+d+g.throttle_cruise, g.throttle_min, g.throttle_max); return output; } // get_pilot_desired_throttle - transform pilot's throttle input to make cruise throttle mid stick // used only for manual throttle modes // returns throttle output 0 to 1000 #define THROTTLE_IN_MIDDLE 500 // the throttle mid point static int16_t get_pilot_desired_throttle(int16_t throttle_control) { int16_t throttle_out; // exit immediately in the simple cases if( throttle_control == 0 || g.throttle_mid == 500) { return throttle_control; } // ensure reasonable throttle values throttle_control = constrain_int16(throttle_control,0,1000); g.throttle_mid = constrain_int16(g.throttle_mid,300,700); // check throttle is above, below or in the deadband if (throttle_control < THROTTLE_IN_MIDDLE) { // below the deadband throttle_out = g.throttle_min + ((float)(throttle_control-g.throttle_min))*((float)(g.throttle_mid - g.throttle_min))/((float)(500-g.throttle_min)); }else if(throttle_control > THROTTLE_IN_MIDDLE) { // above the deadband throttle_out = g.throttle_mid + ((float)(throttle_control-500))*(float)(1000-g.throttle_mid)/500.0f; }else{ // must be in the deadband throttle_out = g.throttle_mid; } return throttle_out; } // get_pilot_desired_climb_rate - transform pilot's throttle input to // climb rate in cm/s. we use radio_in instead of control_in to get the full range // without any deadzone at the bottom #define THROTTLE_IN_DEADBAND_TOP (THROTTLE_IN_MIDDLE+THROTTLE_IN_DEADBAND) // top of the deadband #define THROTTLE_IN_DEADBAND_BOTTOM (THROTTLE_IN_MIDDLE-THROTTLE_IN_DEADBAND) // bottom of the deadband static int16_t get_pilot_desired_climb_rate(int16_t throttle_control) { int16_t desired_rate = 0; // throttle failsafe check if( failsafe.radio ) { return 0; } // ensure a reasonable throttle value throttle_control = constrain_int16(throttle_control,0,1000); // check throttle is above, below or in the deadband if (throttle_control < THROTTLE_IN_DEADBAND_BOTTOM) { // below the deadband desired_rate = (int32_t)g.pilot_velocity_z_max * (throttle_control-THROTTLE_IN_DEADBAND_BOTTOM) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND); }else if (throttle_control > THROTTLE_IN_DEADBAND_TOP) { // above the deadband desired_rate = (int32_t)g.pilot_velocity_z_max * (throttle_control-THROTTLE_IN_DEADBAND_TOP) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND); }else{ // must be in the deadband desired_rate = 0; } // desired climb rate for logging desired_climb_rate = desired_rate; return desired_rate; } // get_initial_alt_hold - get new target altitude based on current altitude and climb rate static int32_t get_initial_alt_hold( int32_t alt_cm, int16_t climb_rate_cms) { int32_t target_alt; int32_t linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt. int32_t linear_velocity; // the velocity we swap between linear and sqrt. linear_velocity = ALT_HOLD_ACCEL_MAX/g.pi_alt_hold.kP(); if (abs(climb_rate_cms) < linear_velocity) { target_alt = alt_cm + climb_rate_cms/g.pi_alt_hold.kP(); } else { linear_distance = ALT_HOLD_ACCEL_MAX/(2*g.pi_alt_hold.kP()*g.pi_alt_hold.kP()); if (climb_rate_cms > 0){ target_alt = alt_cm + linear_distance + (int32_t)climb_rate_cms*(int32_t)climb_rate_cms/(2*ALT_HOLD_ACCEL_MAX); } else { target_alt = alt_cm - ( linear_distance + (int32_t)climb_rate_cms*(int32_t)climb_rate_cms/(2*ALT_HOLD_ACCEL_MAX) ); } } return constrain_int32(target_alt, alt_cm - ALT_HOLD_INIT_MAX_OVERSHOOT, alt_cm + ALT_HOLD_INIT_MAX_OVERSHOOT); } // get_throttle_rate - calculates desired accel required to achieve desired z_target_speed // sets accel based throttle controller target static void get_throttle_rate(float z_target_speed) { static uint32_t last_call_ms = 0; static float z_rate_error = 0; // The velocity error in cm. static float z_target_speed_filt = 0; // The filtered requested speed float z_target_speed_delta; // The change in requested speed int32_t p; // used to capture pid values for logging int32_t output; // the target acceleration if the accel based throttle is enabled, otherwise the output to be sent to the motors uint32_t now = millis(); // reset target altitude if this controller has just been engaged if( now - last_call_ms > 100 ) { // Reset Filter z_rate_error = 0; z_target_speed_filt = z_target_speed; output = 0; } else { // calculate rate error and filter with cut off frequency of 2 Hz z_rate_error = z_rate_error + 0.20085f * ((z_target_speed - climb_rate) - z_rate_error); // feed forward acceleration based on change in the filtered desired speed. z_target_speed_delta = 0.20085f * (z_target_speed - z_target_speed_filt); z_target_speed_filt = z_target_speed_filt + z_target_speed_delta; output = z_target_speed_delta * 50.0f; // To-Do: replace 50 with dt } last_call_ms = now; // calculate p p = g.pid_throttle_rate.kP() * z_rate_error; // consolidate and constrain target acceleration output += p; output = constrain_int32(output, -32000, 32000); // set target for accel based throttle controller set_throttle_accel_target(output); // update throttle cruise // TO-DO: this may not be correct because g.rc_3.servo_out has not been updated for this iteration if( z_target_speed == 0 ) { update_throttle_cruise(g.rc_3.servo_out); } } // get_throttle_althold - hold at the desired altitude in cm // updates accel based throttle controller targets // Note: max_climb_rate is an optional parameter to allow reuse of this function by landing controller static void get_throttle_althold(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate) { int32_t alt_error; float desired_rate; int32_t linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt. // calculate altitude error alt_error = target_alt - current_loc.alt; // check kP to avoid division by zero if( g.pi_alt_hold.kP() != 0 ) { linear_distance = ALT_HOLD_ACCEL_MAX/(2*g.pi_alt_hold.kP()*g.pi_alt_hold.kP()); if( alt_error > 2*linear_distance ) { desired_rate = safe_sqrt(2*ALT_HOLD_ACCEL_MAX*(alt_error-linear_distance)); }else if( alt_error < -2*linear_distance ) { desired_rate = -safe_sqrt(2*ALT_HOLD_ACCEL_MAX*(-alt_error-linear_distance)); }else{ desired_rate = g.pi_alt_hold.get_p(alt_error); } }else{ desired_rate = 0; } desired_rate = constrain_float(desired_rate, min_climb_rate, max_climb_rate); // call rate based throttle controller which will update accel based throttle controller targets get_throttle_rate(desired_rate); // update altitude error reported to GCS altitude_error = alt_error; // TO-DO: enabled PID logging for this controller } // get_throttle_althold_with_slew - altitude controller with slew to avoid step changes in altitude target // calls normal althold controller which updates accel based throttle controller targets static void get_throttle_althold_with_slew(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate) { float alt_change = target_alt-controller_desired_alt; // adjust desired alt if motors have not hit their limits if ((alt_change<0 && !motors.limit.throttle_lower) || (alt_change>0 && !motors.limit.throttle_upper)) { controller_desired_alt += constrain_float(alt_change, min_climb_rate*0.02f, max_climb_rate*0.02f); } // do not let target altitude get too far from current altitude controller_desired_alt = constrain_float(controller_desired_alt,current_loc.alt-750,current_loc.alt+750); get_throttle_althold(controller_desired_alt, min_climb_rate-250, max_climb_rate+250); // 250 is added to give head room to alt hold controller } // get_throttle_rate_stabilized - rate controller with additional 'stabilizer' // 'stabilizer' ensure desired rate is being met // calls normal throttle rate controller which updates accel based throttle controller targets static void get_throttle_rate_stabilized(int16_t target_rate) { // adjust desired alt if motors have not hit their limits if ((target_rate<0 && !motors.limit.throttle_lower) || (target_rate>0 && !motors.limit.throttle_upper)) { controller_desired_alt += target_rate * 0.02f; } // do not let target altitude get too far from current altitude controller_desired_alt = constrain_float(controller_desired_alt,current_loc.alt-750,current_loc.alt+750); #if AC_FENCE == ENABLED // do not let target altitude be too close to the fence // To-Do: add this to other altitude controllers if((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) { float alt_limit = fence.get_safe_alt() * 100.0f; if (controller_desired_alt > alt_limit) { controller_desired_alt = alt_limit; } } #endif // update target altitude for reporting purposes set_target_alt_for_reporting(controller_desired_alt); get_throttle_althold(controller_desired_alt, -g.pilot_velocity_z_max-250, g.pilot_velocity_z_max+250); // 250 is added to give head room to alt hold controller } // get_throttle_land - high level landing logic // sends the desired acceleration in the accel based throttle controller // called at 50hz static void get_throttle_land() { // if we are above 10m and the sonar does not sense anything perform regular alt hold descent if (current_loc.alt >= LAND_START_ALT && !(g.sonar_enabled && sonar_alt_health >= SONAR_ALT_HEALTH_MAX)) { get_throttle_althold_with_slew(LAND_START_ALT, -wp_nav.get_descent_velocity(), -abs(g.land_speed)); }else{ get_throttle_rate_stabilized(-abs(g.land_speed)); // disarm when the landing detector says we've landed and throttle is at min (or we're in failsafe so we have no pilot thorottle input) #if LAND_REQUIRE_MIN_THROTTLE_TO_DISARM == ENABLED if( ap.land_complete && (g.rc_3.control_in == 0 || failsafe.radio) ) { #else if (ap.land_complete) { #endif init_disarm_motors(); } } } // reset_land_detector - initialises land detector static void reset_land_detector() { set_land_complete(false); land_detector = 0; } // update_land_detector - checks if we have landed and updates the ap.land_complete flag // returns true if we have landed static bool update_land_detector() { // detect whether we have landed by watching for low climb rate and minimum throttle if (abs(climb_rate) < 20 && motors.limit.throttle_lower) { if (!ap.land_complete) { // run throttle controller if accel based throttle controller is enabled and active (active means it has been given a target) if( land_detector < LAND_DETECTOR_TRIGGER) { land_detector++; }else{ set_land_complete(true); land_detector = 0; } } }else if (g.rc_3.control_in != 0 || failsafe.radio){ // zero throttle locks land_complete as true // we've sensed movement up or down so reset land_detector land_detector = 0; if(ap.land_complete) { set_land_complete(false); } } // return current state of landing return ap.land_complete; } // get_throttle_surface_tracking - hold copter at the desired distance above the ground // updates accel based throttle controller targets static void get_throttle_surface_tracking(int16_t target_rate) { static uint32_t last_call_ms = 0; float distance_error; float velocity_correction; uint32_t now = millis(); // reset target altitude if this controller has just been engaged if( now - last_call_ms > 200 ) { target_sonar_alt = sonar_alt + controller_desired_alt - current_loc.alt; } last_call_ms = now; // adjust sonar target alt if motors have not hit their limits if ((target_rate<0 && !motors.limit.throttle_lower) || (target_rate>0 && !motors.limit.throttle_upper)) { target_sonar_alt += target_rate * 0.02f; } // do not let target altitude get too far from current altitude above ground // Note: the 750cm limit is perhaps too wide but is consistent with the regular althold limits and helps ensure a smooth transition target_sonar_alt = constrain_float(target_sonar_alt,sonar_alt-750,sonar_alt+750); // calc desired velocity correction from target sonar alt vs actual sonar alt distance_error = target_sonar_alt-sonar_alt; velocity_correction = distance_error * g.sonar_gain; velocity_correction = constrain_float(velocity_correction, -THR_SURFACE_TRACKING_VELZ_MAX, THR_SURFACE_TRACKING_VELZ_MAX); // call regular rate stabilize alt hold controller get_throttle_rate_stabilized(target_rate + velocity_correction); } /* * reset all I integrators */ static void reset_I_all(void) { reset_rate_I(); reset_throttle_I(); reset_optflow_I(); } static void reset_rate_I() { g.pid_rate_roll.reset_I(); g.pid_rate_pitch.reset_I(); g.pid_rate_yaw.reset_I(); } static void reset_optflow_I(void) { g.pid_optflow_roll.reset_I(); g.pid_optflow_pitch.reset_I(); of_roll = 0; of_pitch = 0; } static void reset_throttle_I(void) { // For Altitude Hold g.pi_alt_hold.reset_I(); g.pid_throttle_accel.reset_I(); } static void set_accel_throttle_I_from_pilot_throttle(int16_t pilot_throttle) { // shift difference between pilot's throttle and hover throttle into accelerometer I g.pid_throttle_accel.set_integrator(pilot_throttle-g.throttle_cruise); }