/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see .
*
* Author: Eugene Shamaev, Siddharth Bharat Purohit
*/
#include
#include
#if HAL_ENABLE_LIBUAVCAN_DRIVERS
#include "AP_UAVCAN.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "AP_UAVCAN_DNA_Server.h"
#include
#include
#include "AP_UAVCAN_pool.h"
#define LED_DELAY_US 50000
extern const AP_HAL::HAL& hal;
// setup default pool size
#ifndef UAVCAN_NODE_POOL_SIZE
#if HAL_CANFD_SUPPORTED
#define UAVCAN_NODE_POOL_SIZE 16384
#else
#define UAVCAN_NODE_POOL_SIZE 8192
#endif
#endif
#if HAL_CANFD_SUPPORTED
#define UAVCAN_STACK_SIZE 8192
#else
#define UAVCAN_STACK_SIZE 4096
#endif
#define debug_uavcan(level_debug, fmt, args...) do { AP::can().log_text(level_debug, "UAVCAN", fmt, ##args); } while (0)
// Translation of all messages from UAVCAN structures into AP structures is done
// in AP_UAVCAN and not in corresponding drivers.
// The overhead of including definitions of DSDL is very high and it is best to
// concentrate in one place.
// table of user settable CAN bus parameters
const AP_Param::GroupInfo AP_UAVCAN::var_info[] = {
// @Param: NODE
// @DisplayName: UAVCAN node that is used for this network
// @Description: UAVCAN node should be set implicitly
// @Range: 1 250
// @User: Advanced
AP_GROUPINFO("NODE", 1, AP_UAVCAN, _uavcan_node, 10),
// @Param: SRV_BM
// @DisplayName: Output channels to be transmitted as servo over UAVCAN
// @Description: Bitmask with one set for channel to be transmitted as a servo command over UAVCAN
// @Bitmask: 0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16, 16: Servo 17, 17: Servo 18, 18: Servo 19, 19: Servo 20, 20: Servo 21, 21: Servo 22, 22: Servo 23, 23: Servo 24, 24: Servo 25, 25: Servo 26, 26: Servo 27, 27: Servo 28, 28: Servo 29, 29: Servo 30, 30: Servo 31, 31: Servo 32
// @User: Advanced
AP_GROUPINFO("SRV_BM", 2, AP_UAVCAN, _servo_bm, 0),
// @Param: ESC_BM
// @DisplayName: Output channels to be transmitted as ESC over UAVCAN
// @Description: Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN
// @Bitmask: 0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16, 16: ESC 17, 17: ESC 18, 18: ESC 19, 19: ESC 20, 20: ESC 21, 21: ESC 22, 22: ESC 23, 23: ESC 24, 24: ESC 25, 25: ESC 26, 26: ESC 27, 27: ESC 28, 28: ESC 29, 29: ESC 30, 30: ESC 31, 31: ESC 32
// @User: Advanced
AP_GROUPINFO("ESC_BM", 3, AP_UAVCAN, _esc_bm, 0),
// @Param: SRV_RT
// @DisplayName: Servo output rate
// @Description: Maximum transmit rate for servo outputs
// @Range: 1 200
// @Units: Hz
// @User: Advanced
AP_GROUPINFO("SRV_RT", 4, AP_UAVCAN, _servo_rate_hz, 50),
// @Param: OPTION
// @DisplayName: UAVCAN options
// @Description: Option flags
// @Bitmask: 0:ClearDNADatabase,1:IgnoreDNANodeConflicts,2:EnableCanfd
// @User: Advanced
AP_GROUPINFO("OPTION", 5, AP_UAVCAN, _options, 0),
// @Param: NTF_RT
// @DisplayName: Notify State rate
// @Description: Maximum transmit rate for Notify State Message
// @Range: 1 200
// @Units: Hz
// @User: Advanced
AP_GROUPINFO("NTF_RT", 6, AP_UAVCAN, _notify_state_hz, 20),
// @Param: ESC_OF
// @DisplayName: ESC Output channels offset
// @Description: Offset for ESC numbering in DroneCAN ESC RawCommand messages. This allows for more efficient packing of ESC command messages. If your ESCs are on servo functions 5 to 8 and you set this parameter to 4 then the ESC RawCommand will be sent with the first 4 slots filled. This can be used for more efficint usage of CAN bandwidth
// @Range: 0 18
// @User: Advanced
AP_GROUPINFO("ESC_OF", 7, AP_UAVCAN, _esc_offset, 0),
// @Param: POOL
// @DisplayName: CAN pool size
// @Description: Amount of memory in bytes to allocate for the DroneCAN memory pool. More memory is needed for higher CAN bus loads
// @Range: 1024 16384
// @User: Advanced
AP_GROUPINFO("POOL", 8, AP_UAVCAN, _pool_size, UAVCAN_NODE_POOL_SIZE),
AP_GROUPEND
};
// this is the timeout in milliseconds for periodic message types. We
// set this to 1 to minimise resend of stale msgs
#define CAN_PERIODIC_TX_TIMEOUT_MS 2
// publisher interfaces
static uavcan::Publisher* act_out_array[HAL_MAX_CAN_PROTOCOL_DRIVERS];
static uavcan::Publisher* esc_raw[HAL_MAX_CAN_PROTOCOL_DRIVERS];
static uavcan::Publisher* rgb_led[HAL_MAX_CAN_PROTOCOL_DRIVERS];
static uavcan::Publisher* buzzer[HAL_MAX_CAN_PROTOCOL_DRIVERS];
static uavcan::Publisher* safety_state[HAL_MAX_CAN_PROTOCOL_DRIVERS];
static uavcan::Publisher* arming_status[HAL_MAX_CAN_PROTOCOL_DRIVERS];
static uavcan::Publisher* rtcm_stream[HAL_MAX_CAN_PROTOCOL_DRIVERS];
static uavcan::Publisher* notify_state[HAL_MAX_CAN_PROTOCOL_DRIVERS];
// Clients
UC_CLIENT_CALL_REGISTRY_BINDER(ParamGetSetCb, uavcan::protocol::param::GetSet);
static uavcan::ServiceClient* param_get_set_client[HAL_MAX_CAN_PROTOCOL_DRIVERS];
static uavcan::protocol::param::GetSet::Request param_getset_req[HAL_MAX_CAN_PROTOCOL_DRIVERS];
UC_CLIENT_CALL_REGISTRY_BINDER(ParamExecuteOpcodeCb, uavcan::protocol::param::ExecuteOpcode);
static uavcan::ServiceClient* param_execute_opcode_client[HAL_MAX_CAN_PROTOCOL_DRIVERS];
static uavcan::protocol::param::ExecuteOpcode::Request param_save_req[HAL_MAX_CAN_PROTOCOL_DRIVERS];
// subscribers
// handler SafteyButton
UC_REGISTRY_BINDER(ButtonCb, ardupilot::indication::Button);
static uavcan::Subscriber *safety_button_listener[HAL_MAX_CAN_PROTOCOL_DRIVERS];
// handler TrafficReport
UC_REGISTRY_BINDER(TrafficReportCb, ardupilot::equipment::trafficmonitor::TrafficReport);
static uavcan::Subscriber *traffic_report_listener[HAL_MAX_CAN_PROTOCOL_DRIVERS];
// handler actuator status
UC_REGISTRY_BINDER(ActuatorStatusCb, uavcan::equipment::actuator::Status);
static uavcan::Subscriber *actuator_status_listener[HAL_MAX_CAN_PROTOCOL_DRIVERS];
// handler ESC status
UC_REGISTRY_BINDER(ESCStatusCb, uavcan::equipment::esc::Status);
static uavcan::Subscriber *esc_status_listener[HAL_MAX_CAN_PROTOCOL_DRIVERS];
// handler DEBUG
UC_REGISTRY_BINDER(DebugCb, uavcan::protocol::debug::LogMessage);
static uavcan::Subscriber *debug_listener[HAL_MAX_CAN_PROTOCOL_DRIVERS];
AP_UAVCAN::AP_UAVCAN()
{
AP_Param::setup_object_defaults(this, var_info);
for (uint8_t i = 0; i < UAVCAN_SRV_NUMBER; i++) {
_SRV_conf[i].esc_pending = false;
_SRV_conf[i].servo_pending = false;
}
debug_uavcan(AP_CANManager::LOG_INFO, "AP_UAVCAN constructed\n\r");
}
AP_UAVCAN::~AP_UAVCAN()
{
}
AP_UAVCAN *AP_UAVCAN::get_uavcan(uint8_t driver_index)
{
if (driver_index >= AP::can().get_num_drivers() ||
AP::can().get_driver_type(driver_index) != AP_CANManager::Driver_Type_UAVCAN) {
return nullptr;
}
return static_cast(AP::can().get_driver(driver_index));
}
bool AP_UAVCAN::add_interface(AP_HAL::CANIface* can_iface) {
if (_iface_mgr == nullptr) {
_iface_mgr = new uavcan::CanIfaceMgr();
}
if (_iface_mgr == nullptr) {
debug_uavcan(AP_CANManager::LOG_ERROR, "UAVCAN: can't create UAVCAN interface manager\n\r");
return false;
}
if (!_iface_mgr->add_interface(can_iface)) {
debug_uavcan(AP_CANManager::LOG_ERROR, "UAVCAN: can't add UAVCAN interface\n\r");
return false;
}
return true;
}
#pragma GCC diagnostic push
#pragma GCC diagnostic error "-Wframe-larger-than=1700"
void AP_UAVCAN::init(uint8_t driver_index, bool enable_filters)
{
_driver_index = driver_index;
if (_initialized) {
debug_uavcan(AP_CANManager::LOG_ERROR, "UAVCAN: init called more than once\n\r");
return;
}
if (_iface_mgr == nullptr) {
debug_uavcan(AP_CANManager::LOG_ERROR, "UAVCAN: can't get UAVCAN interface driver\n\r");
return;
}
_allocator = new AP_PoolAllocator(_pool_size);
if (_allocator == nullptr || !_allocator->init()) {
debug_uavcan(AP_CANManager::LOG_ERROR, "UAVCAN: couldn't allocate node pool\n");
return;
}
_node = new uavcan::Node<0>(*_iface_mgr, uavcan::SystemClock::instance(), *_allocator);
if (_node == nullptr) {
debug_uavcan(AP_CANManager::LOG_ERROR, "UAVCAN: couldn't allocate node\n\r");
return;
}
if (_node->isStarted()) {
debug_uavcan(AP_CANManager::LOG_ERROR, "UAVCAN: node was already started?\n\r");
return;
}
{
uavcan::NodeID self_node_id(_uavcan_node);
_node->setNodeID(self_node_id);
char ndname[20];
snprintf(ndname, sizeof(ndname), "org.ardupilot:%u", driver_index);
uavcan::NodeStatusProvider::NodeName name(ndname);
_node->setName(name);
}
{
uavcan::protocol::SoftwareVersion sw_version; // Standard type uavcan.protocol.SoftwareVersion
sw_version.major = AP_UAVCAN_SW_VERS_MAJOR;
sw_version.minor = AP_UAVCAN_SW_VERS_MINOR;
_node->setSoftwareVersion(sw_version);
uavcan::protocol::HardwareVersion hw_version; // Standard type uavcan.protocol.HardwareVersion
hw_version.major = AP_UAVCAN_HW_VERS_MAJOR;
hw_version.minor = AP_UAVCAN_HW_VERS_MINOR;
const uint8_t uid_buf_len = hw_version.unique_id.capacity();
uint8_t uid_len = uid_buf_len;
uint8_t unique_id[uid_buf_len];
if (hal.util->get_system_id_unformatted(unique_id, uid_len)) {
//This is because we are maintaining a common Server Record for all UAVCAN Instances.
//In case the node IDs are different, and unique id same, it will create
//conflict in the Server Record.
unique_id[uid_len - 1] += _uavcan_node;
uavcan::copy(unique_id, unique_id + uid_len, hw_version.unique_id.begin());
}
_node->setHardwareVersion(hw_version);
}
#if UAVCAN_SUPPORT_CANFD
if (option_is_set(Options::CANFD_ENABLED)) {
_node->enableCanFd();
}
#endif
int start_res = _node->start();
if (start_res < 0) {
debug_uavcan(AP_CANManager::LOG_ERROR, "UAVCAN: node start problem, error %d\n\r", start_res);
return;
}
//Start Servers
if (!AP::uavcan_dna_server().init(this)) {
debug_uavcan(AP_CANManager::LOG_ERROR, "UAVCAN: Failed to start DNA Server\n\r");
return;
}
// Roundup all subscribers from supported drivers
AP_UAVCAN_DNA_Server::subscribe_msgs(this);
AP_GPS_UAVCAN::subscribe_msgs(this);
AP_Compass_UAVCAN::subscribe_msgs(this);
#if AP_BARO_UAVCAN_ENABLED
AP_Baro_UAVCAN::subscribe_msgs(this);
#endif
AP_BattMonitor_UAVCAN::subscribe_msgs(this);
#if AP_AIRSPEED_UAVCAN_ENABLED
AP_Airspeed_UAVCAN::subscribe_msgs(this);
#endif
#if AP_OPTICALFLOW_HEREFLOW_ENABLED
AP_OpticalFlow_HereFlow::subscribe_msgs(this);
#endif
#if AP_RANGEFINDER_UAVCAN_ENABLED
AP_RangeFinder_UAVCAN::subscribe_msgs(this);
#endif
#if HAL_EFI_ENABLED
AP_EFI_DroneCAN::subscribe_msgs(this);
#endif
act_out_array[driver_index] = new uavcan::Publisher(*_node);
act_out_array[driver_index]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(2));
act_out_array[driver_index]->setPriority(uavcan::TransferPriority::OneLowerThanHighest);
esc_raw[driver_index] = new uavcan::Publisher(*_node);
esc_raw[driver_index]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(2));
esc_raw[driver_index]->setPriority(uavcan::TransferPriority::OneLowerThanHighest);
rgb_led[driver_index] = new uavcan::Publisher(*_node);
rgb_led[driver_index]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
rgb_led[driver_index]->setPriority(uavcan::TransferPriority::OneHigherThanLowest);
buzzer[driver_index] = new uavcan::Publisher(*_node);
buzzer[driver_index]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
buzzer[driver_index]->setPriority(uavcan::TransferPriority::OneHigherThanLowest);
safety_state[driver_index] = new uavcan::Publisher(*_node);
safety_state[driver_index]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
safety_state[driver_index]->setPriority(uavcan::TransferPriority::OneHigherThanLowest);
arming_status[driver_index] = new uavcan::Publisher(*_node);
arming_status[driver_index]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
arming_status[driver_index]->setPriority(uavcan::TransferPriority::OneHigherThanLowest);
rtcm_stream[driver_index] = new uavcan::Publisher(*_node);
rtcm_stream[driver_index]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
rtcm_stream[driver_index]->setPriority(uavcan::TransferPriority::OneHigherThanLowest);
notify_state[driver_index] = new uavcan::Publisher(*_node);
notify_state[driver_index]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
notify_state[driver_index]->setPriority(uavcan::TransferPriority::OneHigherThanLowest);
param_get_set_client[driver_index] = new uavcan::ServiceClient(*_node, ParamGetSetCb(this, &AP_UAVCAN::handle_param_get_set_response));
param_execute_opcode_client[driver_index] = new uavcan::ServiceClient(*_node, ParamExecuteOpcodeCb(this, &AP_UAVCAN::handle_param_save_response));
safety_button_listener[driver_index] = new uavcan::Subscriber(*_node);
if (safety_button_listener[driver_index]) {
safety_button_listener[driver_index]->start(ButtonCb(this, &handle_button));
}
traffic_report_listener[driver_index] = new uavcan::Subscriber(*_node);
if (traffic_report_listener[driver_index]) {
traffic_report_listener[driver_index]->start(TrafficReportCb(this, &handle_traffic_report));
}
actuator_status_listener[driver_index] = new uavcan::Subscriber(*_node);
if (actuator_status_listener[driver_index]) {
actuator_status_listener[driver_index]->start(ActuatorStatusCb(this, &handle_actuator_status));
}
esc_status_listener[driver_index] = new uavcan::Subscriber(*_node);
if (esc_status_listener[driver_index]) {
esc_status_listener[driver_index]->start(ESCStatusCb(this, &handle_ESC_status));
}
debug_listener[driver_index] = new uavcan::Subscriber(*_node);
if (debug_listener[driver_index]) {
debug_listener[driver_index]->start(DebugCb(this, &handle_debug));
}
_led_conf.devices_count = 0;
/*
* Informing other nodes that we're ready to work.
* Default mode is INITIALIZING.
*/
_node->setModeOperational();
// Spin node for device discovery
_node->spin(uavcan::MonotonicDuration::fromMSec(5000));
snprintf(_thread_name, sizeof(_thread_name), "uavcan_%u", driver_index);
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_UAVCAN::loop, void), _thread_name, UAVCAN_STACK_SIZE, AP_HAL::Scheduler::PRIORITY_CAN, 0)) {
_node->setModeOfflineAndPublish();
debug_uavcan(AP_CANManager::LOG_ERROR, "UAVCAN: couldn't create thread\n\r");
return;
}
_initialized = true;
debug_uavcan(AP_CANManager::LOG_INFO, "UAVCAN: init done\n\r");
}
#pragma GCC diagnostic pop
void AP_UAVCAN::loop(void)
{
while (true) {
if (!_initialized) {
hal.scheduler->delay_microseconds(1000);
continue;
}
const int error = _node->spin(uavcan::MonotonicDuration::fromMSec(1));
if (error < 0) {
hal.scheduler->delay_microseconds(100);
continue;
}
if (_SRV_armed) {
bool sent_servos = false;
if (_servo_bm > 0) {
// if we have any Servos in bitmask
uint32_t now = AP_HAL::native_micros();
const uint32_t servo_period_us = 1000000UL / unsigned(_servo_rate_hz.get());
if (now - _SRV_last_send_us >= servo_period_us) {
_SRV_last_send_us = now;
SRV_send_actuator();
sent_servos = true;
for (uint8_t i = 0; i < UAVCAN_SRV_NUMBER; i++) {
_SRV_conf[i].servo_pending = false;
}
}
}
// if we have any ESC's in bitmask
if (_esc_bm > 0 && !sent_servos) {
SRV_send_esc();
}
for (uint8_t i = 0; i < UAVCAN_SRV_NUMBER; i++) {
_SRV_conf[i].esc_pending = false;
}
}
led_out_send();
buzzer_send();
rtcm_stream_send();
safety_state_send();
notify_state_send();
send_parameter_request();
send_parameter_save_request();
AP::uavcan_dna_server().verify_nodes(this);
}
}
///// SRV output /////
void AP_UAVCAN::SRV_send_actuator(void)
{
uint8_t starting_servo = 0;
bool repeat_send;
WITH_SEMAPHORE(SRV_sem);
do {
repeat_send = false;
uavcan::equipment::actuator::ArrayCommand msg;
uint8_t i;
// UAVCAN can hold maximum of 15 commands in one frame
for (i = 0; starting_servo < UAVCAN_SRV_NUMBER && i < 15; starting_servo++) {
uavcan::equipment::actuator::Command cmd;
/*
* Servo output uses a range of 1000-2000 PWM for scaling.
* This converts output PWM from [1000:2000] range to [-1:1] range that
* is passed to servo as unitless type via UAVCAN.
* This approach allows for MIN/TRIM/MAX values to be used fully on
* autopilot side and for servo it should have the setup to provide maximum
* physically possible throws at [-1:1] limits.
*/
if (_SRV_conf[starting_servo].servo_pending && ((((uint32_t) 1) << starting_servo) & _servo_bm)) {
cmd.actuator_id = starting_servo + 1;
// TODO: other types
cmd.command_type = uavcan::equipment::actuator::Command::COMMAND_TYPE_UNITLESS;
// TODO: failsafe, safety
cmd.command_value = constrain_float(((float) _SRV_conf[starting_servo].pulse - 1000.0) / 500.0 - 1.0, -1.0, 1.0);
msg.commands.push_back(cmd);
i++;
}
}
if (i > 0) {
act_out_array[_driver_index]->broadcast(msg);
if (i == 15) {
repeat_send = true;
}
}
} while (repeat_send);
}
void AP_UAVCAN::SRV_send_esc(void)
{
static const int cmd_max = uavcan::equipment::esc::RawCommand::FieldTypes::cmd::RawValueType::max();
uavcan::equipment::esc::RawCommand esc_msg;
uint8_t active_esc_num = 0, max_esc_num = 0;
uint8_t k = 0;
WITH_SEMAPHORE(SRV_sem);
// esc offset allows for efficient packing of higher ESC numbers in RawCommand
const uint8_t esc_offset = constrain_int16(_esc_offset.get(), 0, UAVCAN_SRV_NUMBER);
// find out how many esc we have enabled and if they are active at all
for (uint8_t i = esc_offset; i < UAVCAN_SRV_NUMBER; i++) {
if ((((uint32_t) 1) << i) & _esc_bm) {
max_esc_num = i + 1;
if (_SRV_conf[i].esc_pending) {
active_esc_num++;
}
}
}
// if at least one is active (update) we need to send to all
if (active_esc_num > 0) {
k = 0;
for (uint8_t i = esc_offset; i < max_esc_num && k < 20; i++) {
if ((((uint32_t) 1) << i) & _esc_bm) {
// TODO: ESC negative scaling for reverse thrust and reverse rotation
float scaled = cmd_max * (hal.rcout->scale_esc_to_unity(_SRV_conf[i].pulse) + 1.0) / 2.0;
scaled = constrain_float(scaled, 0, cmd_max);
esc_msg.cmd.push_back(static_cast(scaled));
} else {
esc_msg.cmd.push_back(static_cast(0));
}
k++;
}
esc_raw[_driver_index]->broadcast(esc_msg);
}
}
void AP_UAVCAN::SRV_push_servos()
{
WITH_SEMAPHORE(SRV_sem);
for (uint8_t i = 0; i < UAVCAN_SRV_NUMBER; i++) {
// Check if this channels has any function assigned
if (SRV_Channels::channel_function(i) >= SRV_Channel::k_none) {
_SRV_conf[i].pulse = SRV_Channels::srv_channel(i)->get_output_pwm();
_SRV_conf[i].esc_pending = true;
_SRV_conf[i].servo_pending = true;
}
}
_SRV_armed = hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED;
}
///// LED /////
void AP_UAVCAN::led_out_send()
{
uint64_t now = AP_HAL::native_micros64();
if ((now - _led_conf.last_update) < LED_DELAY_US) {
return;
}
uavcan::equipment::indication::LightsCommand msg;
{
WITH_SEMAPHORE(_led_out_sem);
if (_led_conf.devices_count == 0) {
return;
}
uavcan::equipment::indication::SingleLightCommand cmd;
for (uint8_t i = 0; i < _led_conf.devices_count; i++) {
cmd.light_id =_led_conf.devices[i].led_index;
cmd.color.red = _led_conf.devices[i].red >> 3;
cmd.color.green = _led_conf.devices[i].green >> 2;
cmd.color.blue = _led_conf.devices[i].blue >> 3;
msg.commands.push_back(cmd);
}
}
rgb_led[_driver_index]->broadcast(msg);
_led_conf.last_update = now;
}
bool AP_UAVCAN::led_write(uint8_t led_index, uint8_t red, uint8_t green, uint8_t blue)
{
if (_led_conf.devices_count >= AP_UAVCAN_MAX_LED_DEVICES) {
return false;
}
WITH_SEMAPHORE(_led_out_sem);
// check if a device instance exists. if so, break so the instance index is remembered
uint8_t instance = 0;
for (; instance < _led_conf.devices_count; instance++) {
if (_led_conf.devices[instance].led_index == led_index) {
break;
}
}
// load into the correct instance.
// if an existing instance was found in above for loop search,
// then instance value is < _led_conf.devices_count.
// otherwise a new one was just found so we increment the count.
// Either way, the correct instance is the current value of instance
_led_conf.devices[instance].led_index = led_index;
_led_conf.devices[instance].red = red;
_led_conf.devices[instance].green = green;
_led_conf.devices[instance].blue = blue;
if (instance == _led_conf.devices_count) {
_led_conf.devices_count++;
}
return true;
}
// buzzer send
void AP_UAVCAN::buzzer_send()
{
uavcan::equipment::indication::BeepCommand msg;
WITH_SEMAPHORE(_buzzer.sem);
uint8_t mask = (1U << _driver_index);
if ((_buzzer.pending_mask & mask) == 0) {
return;
}
_buzzer.pending_mask &= ~mask;
msg.frequency = _buzzer.frequency;
msg.duration = _buzzer.duration;
buzzer[_driver_index]->broadcast(msg);
}
// buzzer support
void AP_UAVCAN::set_buzzer_tone(float frequency, float duration_s)
{
WITH_SEMAPHORE(_buzzer.sem);
_buzzer.frequency = frequency;
_buzzer.duration = duration_s;
_buzzer.pending_mask = 0xFF;
}
// notify state send
void AP_UAVCAN::notify_state_send()
{
uint32_t now = AP_HAL::native_millis();
if (_notify_state_hz == 0 || (now - _last_notify_state_ms) < uint32_t(1000 / _notify_state_hz)) {
return;
}
ardupilot::indication::NotifyState msg;
msg.vehicle_state = 0;
if (AP_Notify::flags.initialising) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_INITIALISING;
}
if (AP_Notify::flags.armed) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_ARMED;
}
if (AP_Notify::flags.flying) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_FLYING;
}
if (AP_Notify::flags.compass_cal_running) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_MAGCAL_RUN;
}
if (AP_Notify::flags.ekf_bad) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_EKF_BAD;
}
if (AP_Notify::flags.esc_calibration) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_ESC_CALIBRATION;
}
if (AP_Notify::flags.failsafe_battery) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_FAILSAFE_BATT;
}
if (AP_Notify::flags.failsafe_gcs) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_FAILSAFE_GCS;
}
if (AP_Notify::flags.failsafe_radio) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_FAILSAFE_RADIO;
}
if (AP_Notify::flags.firmware_update) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_FW_UPDATE;
}
if (AP_Notify::flags.gps_fusion) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_GPS_FUSION;
}
if (AP_Notify::flags.gps_glitching) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_GPS_GLITCH;
}
if (AP_Notify::flags.have_pos_abs) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_POS_ABS_AVAIL;
}
if (AP_Notify::flags.leak_detected) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_LEAK_DET;
}
if (AP_Notify::flags.parachute_release) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_CHUTE_RELEASED;
}
if (AP_Notify::flags.powering_off) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_POWERING_OFF;
}
if (AP_Notify::flags.pre_arm_check) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_PREARM;
}
if (AP_Notify::flags.pre_arm_gps_check) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_PREARM_GPS;
}
if (AP_Notify::flags.save_trim) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_SAVE_TRIM;
}
if (AP_Notify::flags.vehicle_lost) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_LOST;
}
if (AP_Notify::flags.video_recording) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_VIDEO_RECORDING;
}
if (AP_Notify::flags.waiting_for_throw) {
msg.vehicle_state |= 1 << ardupilot::indication::NotifyState::VEHICLE_STATE_THROW_READY;
}
msg.aux_data_type = ardupilot::indication::NotifyState::VEHICLE_YAW_EARTH_CENTIDEGREES;
uint16_t yaw_cd = (uint16_t)(360.0f - degrees(AP::ahrs().get_yaw()))*100.0f;
const uint8_t *data = (uint8_t *)&yaw_cd;
for (uint8_t i=0; i<2; i++) {
msg.aux_data.push_back(data[i]);
}
notify_state[_driver_index]->broadcast(msg);
_last_notify_state_ms = AP_HAL::native_millis();
}
void AP_UAVCAN::rtcm_stream_send()
{
WITH_SEMAPHORE(_rtcm_stream.sem);
if (_rtcm_stream.buf == nullptr ||
_rtcm_stream.buf->available() == 0) {
// nothing to send
return;
}
uint32_t now = AP_HAL::native_millis();
if (now - _rtcm_stream.last_send_ms < 20) {
// don't send more than 50 per second
return;
}
_rtcm_stream.last_send_ms = now;
uavcan::equipment::gnss::RTCMStream msg;
uint32_t len = _rtcm_stream.buf->available();
if (len > 128) {
len = 128;
}
msg.protocol_id = uavcan::equipment::gnss::RTCMStream::PROTOCOL_ID_RTCM3;
for (uint8_t i=0; iread_byte(&b)) {
return;
}
msg.data.push_back(b);
}
rtcm_stream[_driver_index]->broadcast(msg);
}
// SafetyState send
void AP_UAVCAN::safety_state_send()
{
uint32_t now = AP_HAL::native_millis();
if (now - _last_safety_state_ms < 500) {
// update at 2Hz
return;
}
_last_safety_state_ms = now;
{ // handle SafetyState
ardupilot::indication::SafetyState safety_msg;
switch (hal.util->safety_switch_state()) {
case AP_HAL::Util::SAFETY_ARMED:
safety_msg.status = ardupilot::indication::SafetyState::STATUS_SAFETY_OFF;
break;
case AP_HAL::Util::SAFETY_DISARMED:
safety_msg.status = ardupilot::indication::SafetyState::STATUS_SAFETY_ON;
break;
default:
// nothing to send
break;
}
safety_state[_driver_index]->broadcast(safety_msg);
}
{ // handle ArmingStatus
uavcan::equipment::safety::ArmingStatus arming_msg;
arming_msg.status = hal.util->get_soft_armed() ? uavcan::equipment::safety::ArmingStatus::STATUS_FULLY_ARMED :
uavcan::equipment::safety::ArmingStatus::STATUS_DISARMED;
arming_status[_driver_index]->broadcast(arming_msg);
}
}
/*
send RTCMStream packet on all active UAVCAN drivers
*/
void AP_UAVCAN::send_RTCMStream(const uint8_t *data, uint32_t len)
{
WITH_SEMAPHORE(_rtcm_stream.sem);
if (_rtcm_stream.buf == nullptr) {
// give enough space for a full round from a NTRIP server with all
// constellations
_rtcm_stream.buf = new ByteBuffer(2400);
}
if (_rtcm_stream.buf == nullptr) {
return;
}
_rtcm_stream.buf->write(data, len);
}
/*
handle Button message
*/
void AP_UAVCAN::handle_button(AP_UAVCAN* ap_uavcan, uint8_t node_id, const ButtonCb &cb)
{
switch (cb.msg->button) {
case ardupilot::indication::Button::BUTTON_SAFETY: {
AP_BoardConfig *brdconfig = AP_BoardConfig::get_singleton();
if (brdconfig && brdconfig->safety_button_handle_pressed(cb.msg->press_time)) {
AP_HAL::Util::safety_state state = hal.util->safety_switch_state();
if (state == AP_HAL::Util::SAFETY_ARMED) {
hal.rcout->force_safety_on();
} else {
hal.rcout->force_safety_off();
}
}
break;
}
}
}
/*
handle traffic report
*/
void AP_UAVCAN::handle_traffic_report(AP_UAVCAN* ap_uavcan, uint8_t node_id, const TrafficReportCb &cb)
{
#if HAL_ADSB_ENABLED
AP_ADSB *adsb = AP::ADSB();
if (!adsb || !adsb->enabled()) {
// ADSB not enabled
return;
}
const ardupilot::equipment::trafficmonitor::TrafficReport &msg = cb.msg[0];
AP_ADSB::adsb_vehicle_t vehicle;
mavlink_adsb_vehicle_t &pkt = vehicle.info;
pkt.ICAO_address = msg.icao_address;
pkt.tslc = msg.tslc;
pkt.lat = msg.latitude_deg_1e7;
pkt.lon = msg.longitude_deg_1e7;
pkt.altitude = msg.alt_m * 1000;
pkt.heading = degrees(msg.heading) * 100;
pkt.hor_velocity = norm(msg.velocity[0], msg.velocity[1]) * 100;
pkt.ver_velocity = -msg.velocity[2] * 100;
pkt.squawk = msg.squawk;
for (uint8_t i=0; i<9; i++) {
pkt.callsign[i] = msg.callsign[i];
}
pkt.emitter_type = msg.traffic_type;
if (msg.alt_type == ardupilot::equipment::trafficmonitor::TrafficReport::ALT_TYPE_PRESSURE_AMSL) {
pkt.flags |= ADSB_FLAGS_VALID_ALTITUDE;
pkt.altitude_type = ADSB_ALTITUDE_TYPE_PRESSURE_QNH;
} else if (msg.alt_type == ardupilot::equipment::trafficmonitor::TrafficReport::ALT_TYPE_WGS84) {
pkt.flags |= ADSB_FLAGS_VALID_ALTITUDE;
pkt.altitude_type = ADSB_ALTITUDE_TYPE_GEOMETRIC;
}
if (msg.lat_lon_valid) {
pkt.flags |= ADSB_FLAGS_VALID_COORDS;
}
if (msg.heading_valid) {
pkt.flags |= ADSB_FLAGS_VALID_HEADING;
}
if (msg.velocity_valid) {
pkt.flags |= ADSB_FLAGS_VALID_VELOCITY;
}
if (msg.callsign_valid) {
pkt.flags |= ADSB_FLAGS_VALID_CALLSIGN;
}
if (msg.ident_valid) {
pkt.flags |= ADSB_FLAGS_VALID_SQUAWK;
}
if (msg.simulated_report) {
pkt.flags |= ADSB_FLAGS_SIMULATED;
}
if (msg.vertical_velocity_valid) {
pkt.flags |= ADSB_FLAGS_VERTICAL_VELOCITY_VALID;
}
if (msg.baro_valid) {
pkt.flags |= ADSB_FLAGS_BARO_VALID;
}
vehicle.last_update_ms = AP_HAL::native_millis() - (vehicle.info.tslc * 1000);
adsb->handle_adsb_vehicle(vehicle);
#endif
}
/*
handle actuator status message
*/
void AP_UAVCAN::handle_actuator_status(AP_UAVCAN* ap_uavcan, uint8_t node_id, const ActuatorStatusCb &cb)
{
// log as CSRV message
AP::logger().Write_ServoStatus(AP_HAL::native_micros64(),
cb.msg->actuator_id,
cb.msg->position,
cb.msg->force,
cb.msg->speed,
cb.msg->power_rating_pct);
}
/*
handle ESC status message
*/
void AP_UAVCAN::handle_ESC_status(AP_UAVCAN* ap_uavcan, uint8_t node_id, const ESCStatusCb &cb)
{
#if HAL_WITH_ESC_TELEM
const uint8_t esc_offset = constrain_int16(ap_uavcan->_esc_offset.get(), 0, UAVCAN_SRV_NUMBER);
const uint8_t esc_index = cb.msg->esc_index + esc_offset;
if (!is_esc_data_index_valid(esc_index)) {
return;
}
TelemetryData t {
.temperature_cdeg = int16_t((KELVIN_TO_C(cb.msg->temperature)) * 100),
.voltage = cb.msg->voltage,
.current = cb.msg->current,
};
ap_uavcan->update_rpm(esc_index, cb.msg->rpm);
ap_uavcan->update_telem_data(esc_index, t,
AP_ESC_Telem_Backend::TelemetryType::CURRENT
| AP_ESC_Telem_Backend::TelemetryType::VOLTAGE
| AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE);
#endif
}
bool AP_UAVCAN::is_esc_data_index_valid(const uint8_t index) {
if (index > UAVCAN_SRV_NUMBER) {
// printf("UAVCAN: invalid esc index: %d. max index allowed: %d\n\r", index, UAVCAN_SRV_NUMBER);
return false;
}
return true;
}
/*
handle LogMessage debug
*/
void AP_UAVCAN::handle_debug(AP_UAVCAN* ap_uavcan, uint8_t node_id, const DebugCb &cb)
{
#if HAL_LOGGING_ENABLED
const auto &msg = *cb.msg;
if (AP::can().get_log_level() != AP_CANManager::LOG_NONE) {
// log to onboard log and mavlink
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "CAN[%u] %s", node_id, msg.text.c_str());
} else {
// only log to onboard log
AP::logger().Write_MessageF("CAN[%u] %s", node_id, msg.text.c_str());
}
#endif
}
void AP_UAVCAN::send_parameter_request()
{
WITH_SEMAPHORE(_param_sem);
if (param_request_sent) {
return;
}
param_get_set_client[_driver_index]->call(param_request_node_id, param_getset_req[_driver_index]);
param_request_sent = true;
}
bool AP_UAVCAN::set_parameter_on_node(uint8_t node_id, const char *name, float value, ParamGetSetFloatCb *cb)
{
WITH_SEMAPHORE(_param_sem);
if (param_int_cb != nullptr ||
param_float_cb != nullptr) {
//busy
return false;
}
param_getset_req[_driver_index].index = 0;
param_getset_req[_driver_index].name = name;
param_getset_req[_driver_index].value.to() = value;
param_float_cb = cb;
param_request_sent = false;
param_request_node_id = node_id;
return true;
}
bool AP_UAVCAN::set_parameter_on_node(uint8_t node_id, const char *name, int32_t value, ParamGetSetIntCb *cb)
{
WITH_SEMAPHORE(_param_sem);
if (param_int_cb != nullptr ||
param_float_cb != nullptr) {
//busy
return false;
}
param_getset_req[_driver_index].index = 0;
param_getset_req[_driver_index].name = name;
param_getset_req[_driver_index].value.to() = value;
param_int_cb = cb;
param_request_sent = false;
param_request_node_id = node_id;
return true;
}
bool AP_UAVCAN::get_parameter_on_node(uint8_t node_id, const char *name, ParamGetSetFloatCb *cb)
{
WITH_SEMAPHORE(_param_sem);
if (param_int_cb != nullptr ||
param_float_cb != nullptr) {
//busy
return false;
}
param_getset_req[_driver_index].index = 0;
param_getset_req[_driver_index].name = name;
param_getset_req[_driver_index].value.to();
param_float_cb = cb;
param_request_sent = false;
param_request_node_id = node_id;
return true;
}
bool AP_UAVCAN::get_parameter_on_node(uint8_t node_id, const char *name, ParamGetSetIntCb *cb)
{
WITH_SEMAPHORE(_param_sem);
if (param_int_cb != nullptr ||
param_float_cb != nullptr) {
//busy
return false;
}
param_getset_req[_driver_index].index = 0;
param_getset_req[_driver_index].name = name;
param_getset_req[_driver_index].value.to();
param_int_cb = cb;
param_request_sent = false;
param_request_node_id = node_id;
return true;
}
void AP_UAVCAN::handle_param_get_set_response(AP_UAVCAN* ap_uavcan, uint8_t node_id, const ParamGetSetCb &cb)
{
WITH_SEMAPHORE(ap_uavcan->_param_sem);
if (!ap_uavcan->param_int_cb &&
!ap_uavcan->param_float_cb) {
return;
}
uavcan::protocol::param::GetSet::Response rsp = cb.rsp->getResponse();
if (rsp.value.is(uavcan::protocol::param::Value::Tag::integer_value) && ap_uavcan->param_int_cb) {
int32_t val = rsp.value.to();
if ((*ap_uavcan->param_int_cb)(ap_uavcan, node_id, rsp.name.c_str(), val)) {
// we want the parameter to be set with val
param_getset_req[ap_uavcan->_driver_index].index = 0;
param_getset_req[ap_uavcan->_driver_index].name = rsp.name;
param_getset_req[ap_uavcan->_driver_index].value.to() = val;
ap_uavcan->param_int_cb = ap_uavcan->param_int_cb;
ap_uavcan->param_request_sent = false;
ap_uavcan->param_request_node_id = node_id;
return;
}
} else if (rsp.value.is(uavcan::protocol::param::Value::Tag::real_value) && ap_uavcan->param_float_cb) {
float val = rsp.value.to();
if ((*ap_uavcan->param_float_cb)(ap_uavcan, node_id, rsp.name.c_str(), val)) {
// we want the parameter to be set with val
param_getset_req[ap_uavcan->_driver_index].index = 0;
param_getset_req[ap_uavcan->_driver_index].name = rsp.name;
param_getset_req[ap_uavcan->_driver_index].value.to() = val;
ap_uavcan->param_float_cb = ap_uavcan->param_float_cb;
ap_uavcan->param_request_sent = false;
ap_uavcan->param_request_node_id = node_id;
return;
}
}
ap_uavcan->param_int_cb = nullptr;
ap_uavcan->param_float_cb = nullptr;
}
void AP_UAVCAN::send_parameter_save_request()
{
WITH_SEMAPHORE(_param_save_sem);
if (param_save_request_sent) {
return;
}
param_execute_opcode_client[_driver_index]->call(param_save_request_node_id, param_save_req[_driver_index]);
param_save_request_sent = true;
}
bool AP_UAVCAN::save_parameters_on_node(uint8_t node_id, ParamSaveCb *cb)
{
WITH_SEMAPHORE(_param_save_sem);
if (save_param_cb != nullptr) {
//busy
return false;
}
param_save_req[_driver_index].opcode = uavcan::protocol::param::ExecuteOpcode::Request::OPCODE_SAVE;
param_save_request_sent = false;
param_save_request_node_id = node_id;
save_param_cb = cb;
return true;
}
// handle parameter save request response
void AP_UAVCAN::handle_param_save_response(AP_UAVCAN* ap_uavcan, uint8_t node_id, const ParamExecuteOpcodeCb &cb)
{
WITH_SEMAPHORE(ap_uavcan->_param_save_sem);
if (!ap_uavcan->save_param_cb) {
return;
}
uavcan::protocol::param::ExecuteOpcode::Response rsp = cb.rsp->getResponse();
(*ap_uavcan->save_param_cb)(ap_uavcan, node_id, rsp.ok);
ap_uavcan->save_param_cb = nullptr;
}
// Send Reboot command
// Note: Do not call this from outside UAVCAN thread context,
// THIS IS NOT A THREAD SAFE API!
void AP_UAVCAN::send_reboot_request(uint8_t node_id)
{
if (_node == nullptr) {
return;
}
uavcan::protocol::RestartNode::Request request;
request.magic_number = uavcan::protocol::RestartNode::Request::MAGIC_NUMBER;
uavcan::ServiceClient client(*_node);
client.setCallback([](const uavcan::ServiceCallResult& call_result){});
client.call(node_id, request);
}
// check if a option is set and if it is then reset it to 0.
// return true if it was set
bool AP_UAVCAN::check_and_reset_option(Options option)
{
bool ret = option_is_set(option);
if (ret) {
_options.set_and_save(int16_t(_options.get() & ~uint16_t(option)));
}
return ret;
}
#endif // HAL_NUM_CAN_IFACES