/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "RPM_Pin.h" #if AP_RPM_PIN_ENABLED #include #include #include extern const AP_HAL::HAL& hal; AP_RPM_Pin::IrqState AP_RPM_Pin::irq_state[RPM_MAX_INSTANCES]; /* open the sensor in constructor */ AP_RPM_Pin::AP_RPM_Pin(AP_RPM &_ap_rpm, uint8_t instance, AP_RPM::RPM_State &_state) : AP_RPM_Backend(_ap_rpm, instance, _state) { } /* handle interrupt on an instance */ void AP_RPM_Pin::irq_handler(uint8_t pin, bool pin_state, uint32_t timestamp) { const uint32_t dt = timestamp - irq_state[state.instance].last_pulse_us; irq_state[state.instance].last_pulse_us = timestamp; // we don't accept pulses less than 100us. Using an irq for such // high RPM is too inaccurate, and it is probably just bounce of // the signal which we should ignore if (dt > 100 && dt < 1000*1000) { irq_state[state.instance].dt_sum += dt; irq_state[state.instance].dt_count++; } } void AP_RPM_Pin::update(void) { if (last_pin != get_pin()) { // detach from last pin if (interrupt_attached) { // ignore this failure of the user may be stuck IGNORE_RETURN(hal.gpio->detach_interrupt(last_pin)); interrupt_attached = false; } irq_state[state.instance].dt_count = 0; irq_state[state.instance].dt_sum = 0; // attach to new pin last_pin = get_pin(); if (last_pin > 0) { hal.gpio->pinMode(last_pin, HAL_GPIO_INPUT); if (hal.gpio->attach_interrupt( last_pin, FUNCTOR_BIND_MEMBER(&AP_RPM_Pin::irq_handler, void, uint8_t, bool, uint32_t), AP_HAL::GPIO::INTERRUPT_RISING)) { interrupt_attached = true; } else { gcs().send_text(MAV_SEVERITY_WARNING, "RPM: Failed to attach to pin %d", last_pin); } } } if (irq_state[state.instance].dt_count > 0) { // disable interrupts to prevent race with irq_handler void *irqstate = hal.scheduler->disable_interrupts_save(); const float dt_avg = static_cast(irq_state[state.instance].dt_sum) / irq_state[state.instance].dt_count; irq_state[state.instance].dt_count = 0; irq_state[state.instance].dt_sum = 0; hal.scheduler->restore_interrupts(irqstate); const float scaling = ap_rpm._params[state.instance].scaling; const float maximum = ap_rpm._params[state.instance].maximum; const float minimum = ap_rpm._params[state.instance].minimum; float quality; const float rpm = scaling * (1.0e6 / dt_avg) * 60; const float filter_value = signal_quality_filter.get(); state.rate_rpm = signal_quality_filter.apply(rpm); if ((maximum <= 0 || rpm <= maximum) && (rpm >= minimum)) { if (is_zero(filter_value)){ quality = 0; } else { quality = 1 - constrain_float((fabsf(rpm-filter_value))/filter_value, 0.0, 1.0); quality = powf(quality, 2.0); } state.last_reading_ms = AP_HAL::millis(); } else { quality = 0; } state.signal_quality = (0.1 * quality) + (0.9 * state.signal_quality); } // assume we get readings at at least 1Hz, otherwise reset quality to zero if (AP_HAL::millis() - state.last_reading_ms > 1000) { state.signal_quality = 0; state.rate_rpm = 0; } } #endif // AP_RPM_PIN_ENABLED