#include #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #include "Scheduler.h" #include "Storage.h" #include "RCInput.h" #include "UARTDriver.h" #include "Util.h" #include "SPIUARTDriver.h" #include "RPIOUARTDriver.h" #include #include #include #include #include #include #include using namespace Linux; extern const AP_HAL::HAL& hal; #define APM_LINUX_TIMER_PRIORITY 15 #define APM_LINUX_UART_PRIORITY 14 #define APM_LINUX_RCIN_PRIORITY 13 #define APM_LINUX_MAIN_PRIORITY 12 #define APM_LINUX_TONEALARM_PRIORITY 11 #define APM_LINUX_IO_PRIORITY 10 #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO #define APM_LINUX_UART_PERIOD 10000 #define APM_LINUX_RCIN_PERIOD 500 #define APM_LINUX_TONEALARM_PERIOD 10000 #define APM_LINUX_IO_PERIOD 20000 #else #define APM_LINUX_UART_PERIOD 10000 #define APM_LINUX_RCIN_PERIOD 10000 #define APM_LINUX_TONEALARM_PERIOD 10000 #define APM_LINUX_IO_PERIOD 20000 #endif // CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO LinuxScheduler::LinuxScheduler() {} void LinuxScheduler::_create_realtime_thread(pthread_t *ctx, int rtprio, const char *name, pthread_startroutine_t start_routine) { struct sched_param param = { .sched_priority = rtprio }; pthread_attr_t attr; int r; pthread_attr_init(&attr); /* we need to run as root to get realtime scheduling. Allow it to run as non-root for debugging purposes, plus to allow the Replay tool to run */ if (geteuid() == 0) { pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED); pthread_attr_setschedpolicy(&attr, SCHED_FIFO); pthread_attr_setschedparam(&attr, ¶m); } r = pthread_create(ctx, &attr, start_routine, this); if (r != 0) { hal.console->printf("Error creating thread '%s': %s\n", name, strerror(r)); panic(PSTR("Failed to create thread")); } pthread_attr_destroy(&attr); if (name) { pthread_setname_np(*ctx, name); } } void LinuxScheduler::init(void* machtnichts) { mlockall(MCL_CURRENT|MCL_FUTURE); clock_gettime(CLOCK_MONOTONIC, &_sketch_start_time); struct sched_param param = { .sched_priority = APM_LINUX_MAIN_PRIORITY }; sched_setscheduler(0, SCHED_FIFO, ¶m); struct { pthread_t *ctx; int rtprio; const char *name; pthread_startroutine_t start_routine; } *iter, table[] = { { .ctx = &_timer_thread_ctx, .rtprio = APM_LINUX_TIMER_PRIORITY, .name = "sched-timer", .start_routine = &Linux::LinuxScheduler::_timer_thread, }, { .ctx = &_uart_thread_ctx, .rtprio = APM_LINUX_UART_PRIORITY, .name = "sched-uart", .start_routine = &Linux::LinuxScheduler::_uart_thread, }, { .ctx = &_rcin_thread_ctx, .rtprio = APM_LINUX_RCIN_PRIORITY, .name = "sched-rcin", .start_routine = &Linux::LinuxScheduler::_rcin_thread, }, { .ctx = &_tonealarm_thread_ctx, .rtprio = APM_LINUX_TONEALARM_PRIORITY, .name = "sched-tonealarm", .start_routine = &Linux::LinuxScheduler::_tonealarm_thread, }, { .ctx = &_io_thread_ctx, .rtprio = APM_LINUX_IO_PRIORITY, .name = "sched-io", .start_routine = &Linux::LinuxScheduler::_io_thread, }, { } }; if (geteuid() != 0) { printf("WARNING: running as non-root. Will not use realtime scheduling\n"); } for (iter = table; iter->ctx; iter++) _create_realtime_thread(iter->ctx, iter->rtprio, iter->name, iter->start_routine); } void LinuxScheduler::_microsleep(uint32_t usec) { struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = usec*1000UL; while (nanosleep(&ts, &ts) == -1 && errno == EINTR) ; } void LinuxScheduler::delay(uint16_t ms) { if (stopped_clock_usec) { return; } uint64_t start = millis64(); while ((millis64() - start) < ms) { // this yields the CPU to other apps _microsleep(1000); if (_min_delay_cb_ms <= ms) { if (_delay_cb) { _delay_cb(); } } } } uint64_t LinuxScheduler::millis64() { if (stopped_clock_usec) { return stopped_clock_usec/1000; } struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return 1.0e3*((ts.tv_sec + (ts.tv_nsec*1.0e-9)) - (_sketch_start_time.tv_sec + (_sketch_start_time.tv_nsec*1.0e-9))); } uint64_t LinuxScheduler::micros64() { if (stopped_clock_usec) { return stopped_clock_usec; } struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return 1.0e6*((ts.tv_sec + (ts.tv_nsec*1.0e-9)) - (_sketch_start_time.tv_sec + (_sketch_start_time.tv_nsec*1.0e-9))); } uint32_t LinuxScheduler::millis() { return millis64() & 0xFFFFFFFF; } uint32_t LinuxScheduler::micros() { return micros64() & 0xFFFFFFFF; } void LinuxScheduler::delay_microseconds(uint16_t us) { if (stopped_clock_usec) { return; } _microsleep(us); } void LinuxScheduler::register_delay_callback(AP_HAL::Proc proc, uint16_t min_time_ms) { _delay_cb = proc; _min_delay_cb_ms = min_time_ms; } void LinuxScheduler::register_timer_process(AP_HAL::MemberProc proc) { for (uint8_t i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] == proc) { return; } } if (_num_timer_procs < LINUX_SCHEDULER_MAX_TIMER_PROCS) { _timer_proc[_num_timer_procs] = proc; _num_timer_procs++; } else { hal.console->printf("Out of timer processes\n"); } } void LinuxScheduler::register_io_process(AP_HAL::MemberProc proc) { for (uint8_t i = 0; i < _num_io_procs; i++) { if (_io_proc[i] == proc) { return; } } if (_num_io_procs < LINUX_SCHEDULER_MAX_IO_PROCS) { _io_proc[_num_io_procs] = proc; _num_io_procs++; } else { hal.console->printf("Out of IO processes\n"); } } void LinuxScheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us) { _failsafe = failsafe; } void LinuxScheduler::suspend_timer_procs() { if (!_timer_semaphore.take(0)) { printf("Failed to take timer semaphore\n"); } } void LinuxScheduler::resume_timer_procs() { _timer_semaphore.give(); } void LinuxScheduler::_run_timers(bool called_from_timer_thread) { if (_in_timer_proc) { return; } _in_timer_proc = true; if (!_timer_semaphore.take(0)) { printf("Failed to take timer semaphore in _run_timers\n"); } // now call the timer based drivers for (int i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i]) { _timer_proc[i](); } } #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT //SPI UART use SPI if (!((LinuxRPIOUARTDriver *)hal.uartC)->isExternal() ) { ((LinuxRPIOUARTDriver *)hal.uartC)->_timer_tick(); } #endif _timer_semaphore.give(); // and the failsafe, if one is setup if (_failsafe != NULL) { _failsafe(); } _in_timer_proc = false; } void *LinuxScheduler::_timer_thread(void* arg) { LinuxScheduler* sched = (LinuxScheduler *)arg; while (sched->system_initializing()) { poll(NULL, 0, 1); } /* this aims to run at an average of 1kHz, so that it can be used to drive 1kHz processes without drift */ uint64_t next_run_usec = sched->micros64() + 1000; while (true) { uint64_t dt = next_run_usec - sched->micros64(); if (dt > 2000) { // we've lost sync - restart next_run_usec = sched->micros64(); } else { sched->_microsleep(dt); } next_run_usec += 1000; // run registered timers sched->_run_timers(true); } return NULL; } void LinuxScheduler::_run_io(void) { if (!_io_semaphore.take(0)) { return; } // now call the IO based drivers for (int i = 0; i < _num_io_procs; i++) { if (_io_proc[i]) { _io_proc[i](); } } _io_semaphore.give(); } void *LinuxScheduler::_rcin_thread(void *arg) { LinuxScheduler* sched = (LinuxScheduler *)arg; while (sched->system_initializing()) { poll(NULL, 0, 1); } while (true) { sched->_microsleep(APM_LINUX_RCIN_PERIOD); LinuxRCInput::from(hal.rcin)->_timer_tick(); } return NULL; } void *LinuxScheduler::_uart_thread(void* arg) { LinuxScheduler* sched = (LinuxScheduler *)arg; while (sched->system_initializing()) { poll(NULL, 0, 1); } while (true) { sched->_microsleep(APM_LINUX_UART_PERIOD); // process any pending serial bytes LinuxUARTDriver::from(hal.uartA)->_timer_tick(); LinuxUARTDriver::from(hal.uartB)->_timer_tick(); #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT //SPI UART not use SPI if (LinuxRPIOUARTDriver::from(hal.uartC)->isExternal()) { LinuxRPIOUARTDriver::from(hal.uartC)->_timer_tick(); } #else LinuxUARTDriver::from(hal.uartC)->_timer_tick(); #endif LinuxUARTDriver::from(hal.uartE)->_timer_tick(); } return NULL; } void *LinuxScheduler::_tonealarm_thread(void* arg) { LinuxScheduler* sched = (LinuxScheduler *)arg; while (sched->system_initializing()) { poll(NULL, 0, 1); } while (true) { sched->_microsleep(APM_LINUX_TONEALARM_PERIOD); // process tone command LinuxUtil::from(hal.util)->_toneAlarm_timer_tick(); } return NULL; } void *LinuxScheduler::_io_thread(void* arg) { LinuxScheduler* sched = (LinuxScheduler *)arg; while (sched->system_initializing()) { poll(NULL, 0, 1); } while (true) { sched->_microsleep(APM_LINUX_IO_PERIOD); // process any pending storage writes LinuxStorage::from(hal.storage)->_timer_tick(); // run registered IO procepsses sched->_run_io(); } return NULL; } void LinuxScheduler::panic(const prog_char_t *errormsg) { write(1, errormsg, strlen(errormsg)); write(1, "\n", 1); hal.rcin->deinit(); hal.scheduler->delay_microseconds(10000); exit(1); } bool LinuxScheduler::in_timerprocess() { return _in_timer_proc; } void LinuxScheduler::begin_atomic() {} void LinuxScheduler::end_atomic() {} bool LinuxScheduler::system_initializing() { return !_initialized; } void LinuxScheduler::system_initialized() { if (_initialized) { panic("PANIC: scheduler::system_initialized called more than once"); } _initialized = true; } void LinuxScheduler::reboot(bool hold_in_bootloader) { exit(1); } void LinuxScheduler::stop_clock(uint64_t time_usec) { if (time_usec >= stopped_clock_usec) { stopped_clock_usec = time_usec; _run_io(); } } #endif // CONFIG_HAL_BOARD