// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include "AP_MotorsHeli_Single.h" #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_MotorsHeli_Single::var_info[] = { AP_NESTEDGROUPINFO(AP_MotorsHeli, 0), // @Param: SV1_POS // @DisplayName: Servo 1 Position // @Description: Angular location of swash servo #1 // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli_Single, _servo1_pos, AP_MOTORS_HELI_SINGLE_SERVO1_POS), // @Param: SV2_POS // @DisplayName: Servo 2 Position // @Description: Angular location of swash servo #2 // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli_Single, _servo2_pos, AP_MOTORS_HELI_SINGLE_SERVO2_POS), // @Param: SV3_POS // @DisplayName: Servo 3 Position // @Description: Angular location of swash servo #3 // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli_Single, _servo3_pos, AP_MOTORS_HELI_SINGLE_SERVO3_POS), // @Param: TAIL_TYPE // @DisplayName: Tail Type // @Description: Tail type selection. Simpler yaw controller used if external gyro is selected // @Values: 0:Servo only,1:Servo with ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch // @User: Standard AP_GROUPINFO("TAIL_TYPE", 4, AP_MotorsHeli_Single, _tail_type, AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO), // @Param: SWASH_TYPE // @DisplayName: Swash Type // @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing // @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing // @User: Standard AP_GROUPINFO("SWASH_TYPE", 5, AP_MotorsHeli_Single, _swash_type, AP_MOTORS_HELI_SINGLE_SWASH_CCPM), // @Param: GYR_GAIN // @DisplayName: External Gyro Gain // @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro // @Range: 0 1000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("GYR_GAIN", 6, AP_MotorsHeli_Single, _ext_gyro_gain_std, AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN), // @Param: PHANG // @DisplayName: Swashplate Phase Angle Compensation // @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem // @Range: -90 90 // @Units: Degrees // @User: Advanced // @Increment: 1 AP_GROUPINFO("PHANG", 7, AP_MotorsHeli_Single, _phase_angle, 0), // @Param: COLYAW // @DisplayName: Collective-Yaw Mixing // @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics. // @Range: -10 10 // @Increment: 0.1 AP_GROUPINFO("COLYAW", 8, AP_MotorsHeli_Single, _collective_yaw_effect, 0), // @Param: FLYBAR_MODE // @DisplayName: Flybar Mode Selector // @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode // @Values: 0:NoFlybar 1:Flybar // @User: Standard AP_GROUPINFO("FLYBAR_MODE", 9, AP_MotorsHeli_Single, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR), // @Param: TAIL_SPEED // @DisplayName: Direct Drive VarPitch Tail ESC speed // @Description: Direct Drive VarPitch Tail ESC speed. Only used when TailType is DirectDrive VarPitch // @Range: 0 1000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("TAIL_SPEED", 10, AP_MotorsHeli_Single, _direct_drive_tailspeed, AP_MOTORS_HELI_SINGLE_DDVPT_SPEED_DEFAULT), // @Param: GYR_GAIN_ACRO // @DisplayName: External Gyro Gain for ACRO // @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro. A value of zero means to use H_GYR_GAIN // @Range: 0 1000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("GYR_GAIN_ACRO", 11, AP_MotorsHeli_Single, _ext_gyro_gain_acro, 0), AP_GROUPEND }; // set update rate to motors - a value in hertz void AP_MotorsHeli_Single::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // setup fast channels uint32_t mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_3 | 1U << AP_MOTORS_MOT_4; hal.rcout->set_freq(mask, _speed_hz); } // enable - starts allowing signals to be sent to motors and servos void AP_MotorsHeli_Single::enable() { // enable output channels hal.rcout->enable_ch(AP_MOTORS_MOT_1); // swash servo 1 hal.rcout->enable_ch(AP_MOTORS_MOT_2); // swash servo 2 hal.rcout->enable_ch(AP_MOTORS_MOT_3); // swash servo 3 hal.rcout->enable_ch(AP_MOTORS_MOT_4); // yaw hal.rcout->enable_ch(AP_MOTORS_HELI_SINGLE_AUX); // output for gyro gain or direct drive variable pitch tail motor hal.rcout->enable_ch(AP_MOTORS_HELI_SINGLE_RSC); // output for main rotor esc } // init_outputs - initialise Servo/PWM ranges and endpoints void AP_MotorsHeli_Single::init_outputs() { // reset swash servo range and endpoints reset_swash_servo (_swash_servo_1); reset_swash_servo (_swash_servo_2); reset_swash_servo (_swash_servo_3); _yaw_servo.set_angle(4500); // set main rotor servo range // tail rotor servo use range as set in vehicle code for rc7 _main_rotor.init_servo(); } // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsHeli_Single::output_test(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!armed()) { return; } // output to motors and servos switch (motor_seq) { case 1: // swash servo 1 hal.rcout->write(AP_MOTORS_MOT_1, pwm); break; case 2: // swash servo 2 hal.rcout->write(AP_MOTORS_MOT_2, pwm); break; case 3: // swash servo 3 hal.rcout->write(AP_MOTORS_MOT_3, pwm); break; case 4: // external gyro & tail servo if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) { if (_acro_tail && _ext_gyro_gain_acro > 0) { write_aux(_ext_gyro_gain_acro); } else { write_aux(_ext_gyro_gain_std); } } hal.rcout->write(AP_MOTORS_MOT_4, pwm); break; case 5: // main rotor hal.rcout->write(AP_MOTORS_HELI_SINGLE_RSC, pwm); break; default: // do nothing break; } } // set_desired_rotor_speed void AP_MotorsHeli_Single::set_desired_rotor_speed(int16_t desired_speed) { _main_rotor.set_desired_speed(desired_speed); // always send desired speed to tail rotor control, will do nothing if not DDVPT not enabled _tail_rotor.set_desired_speed(_direct_drive_tailspeed); } // calculate_scalars - recalculates various scalers used. void AP_MotorsHeli_Single::calculate_armed_scalars() { _main_rotor.set_ramp_time(_rsc_ramp_time); _main_rotor.set_runup_time(_rsc_runup_time); _main_rotor.set_critical_speed(_rsc_critical); _main_rotor.set_idle_output(_rsc_idle_output); _main_rotor.set_power_output_range(_rsc_power_low, _rsc_power_high); _main_rotor.recalc_scalers(); } // calculate_scalars - recalculates various scalers used. void AP_MotorsHeli_Single::calculate_scalars() { // range check collective min, max and mid if( _collective_min >= _collective_max ) { _collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN; _collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX; } _collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max); // calculate collective mid point as a number from 0 to 1000 _collective_mid_pwm = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min))*1000.0f; // calculate maximum collective pitch range from full positive pitch to zero pitch _collective_range = 1000 - _collective_mid_pwm; // determine roll, pitch and collective input scaling _roll_scaler = (float)_cyclic_max/4500.0f; _pitch_scaler = (float)_cyclic_max/4500.0f; _collective_scalar = ((float)(_collective_max-_collective_min))/1000.0f; // calculate factors based on swash type and servo position calculate_roll_pitch_collective_factors(); // send setpoints to main rotor controller and trigger recalculation of scalars _main_rotor.set_control_mode(static_cast(_rsc_mode.get())); calculate_armed_scalars(); // send setpoints to tail rotor controller and trigger recalculation of scalars if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) { _tail_rotor.set_control_mode(ROTOR_CONTROL_MODE_SPEED_SETPOINT); _tail_rotor.set_ramp_time(AP_MOTORS_HELI_SINGLE_DDVPT_RAMP_TIME); _tail_rotor.set_runup_time(AP_MOTORS_HELI_SINGLE_DDVPT_RUNUP_TIME); _tail_rotor.set_critical_speed(_rsc_critical); _tail_rotor.set_idle_output(_rsc_idle_output); } else { _tail_rotor.set_control_mode(ROTOR_CONTROL_MODE_DISABLED); _tail_rotor.set_ramp_time(0); _tail_rotor.set_runup_time(0); _tail_rotor.set_critical_speed(0); _tail_rotor.set_idle_output(0); } _tail_rotor.recalc_scalers(); } // calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position void AP_MotorsHeli_Single::calculate_roll_pitch_collective_factors() { if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_CCPM) { //CCPM Swashplate, perform control mixing // roll factors _rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - (_phase_angle + _delta_phase_angle))); _rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - (_phase_angle + _delta_phase_angle))); _rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - (_phase_angle + _delta_phase_angle))); // pitch factors _pitchFactor[CH_1] = cosf(radians(_servo1_pos - (_phase_angle + _delta_phase_angle))); _pitchFactor[CH_2] = cosf(radians(_servo2_pos - (_phase_angle + _delta_phase_angle))); _pitchFactor[CH_3] = cosf(radians(_servo3_pos - (_phase_angle + _delta_phase_angle))); // collective factors _collectiveFactor[CH_1] = 1; _collectiveFactor[CH_2] = 1; _collectiveFactor[CH_3] = 1; }else{ //H1 Swashplate, keep servo outputs seperated // roll factors _rollFactor[CH_1] = 1; _rollFactor[CH_2] = 0; _rollFactor[CH_3] = 0; // pitch factors _pitchFactor[CH_1] = 0; _pitchFactor[CH_2] = 1; _pitchFactor[CH_3] = 0; // collective factors _collectiveFactor[CH_1] = 0; _collectiveFactor[CH_2] = 0; _collectiveFactor[CH_3] = 1; } } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsHeli_Single::get_motor_mask() { // heli uses channels 1,2,3,4,7 and 8 return (1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << AP_MOTORS_HELI_SINGLE_AUX | 1U << AP_MOTORS_HELI_SINGLE_RSC); } // update_motor_controls - sends commands to motor controllers void AP_MotorsHeli_Single::update_motor_control(RotorControlState state) { // Send state update to motors _tail_rotor.output(state); _main_rotor.output(state); if (state == ROTOR_CONTROL_STOP){ // set engine run enable aux output to not run position to kill engine when disarmed RC_Channel_aux::set_radio_to_min(RC_Channel_aux::k_engine_run_enable); } else { // else if armed, set engine run enable output to run position RC_Channel_aux::set_radio_to_max(RC_Channel_aux::k_engine_run_enable); } // Check if both rotors are run-up, tail rotor controller always returns true if not enabled _heliflags.rotor_runup_complete = ( _main_rotor.is_runup_complete() && _tail_rotor.is_runup_complete() ); } // set_delta_phase_angle for setting variable phase angle compensation and force // recalculation of collective factors void AP_MotorsHeli_Single::set_delta_phase_angle(int16_t angle) { angle = constrain_int16(angle, -90, 90); _delta_phase_angle = angle; calculate_roll_pitch_collective_factors(); } // // move_actuators - moves swash plate and tail rotor // - expected ranges: // roll : -4500 ~ 4500 // pitch: -4500 ~ 4500 // collective: 0 ~ 1000 // yaw: -4500 ~ 4500 // void AP_MotorsHeli_Single::move_actuators(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out) { int16_t yaw_offset = 0; int16_t coll_out_scaled; // initialize limits flag limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // rescale roll_out and pitch_out into the min and max ranges to provide linear motion // across the input range instead of stopping when the input hits the constrain value // these calculations are based on an assumption of the user specified cyclic_max // coming into this equation at 4500 or less, and based on the original assumption of the // total _servo_x.servo_out range being -4500 to 4500. float total_out = pythagorous2((float)pitch_out, (float)roll_out); if (total_out > _cyclic_max) { float ratio = (float)_cyclic_max / total_out; roll_out *= ratio; pitch_out *= ratio; limit.roll_pitch = true; } // constrain collective input _collective_out = coll_in; if (_collective_out <= 0) { _collective_out = 0; limit.throttle_lower = true; } if (_collective_out >= 1000) { _collective_out = 1000; limit.throttle_upper = true; } // ensure not below landed/landing collective if (_heliflags.landing_collective && _collective_out < _land_collective_min) { _collective_out = _land_collective_min; limit.throttle_lower = true; } // scale collective pitch coll_out_scaled = _collective_out * _collective_scalar + _collective_min - 1000; // if servo output not in manual mode, process pre-compensation factors if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) { // rudder feed forward based on collective // the feed-forward is not required when the motor is stopped or at idle, and thus not creating torque // also not required if we are using external gyro if ((_main_rotor.get_control_output() > _rsc_idle_output) && _tail_type != AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) { // sanity check collective_yaw_effect _collective_yaw_effect = constrain_float(_collective_yaw_effect, -AP_MOTORS_HELI_SINGLE_COLYAW_RANGE, AP_MOTORS_HELI_SINGLE_COLYAW_RANGE); yaw_offset = _collective_yaw_effect * abs(_collective_out - _collective_mid_pwm); } } else { yaw_offset = 0; } // feed power estimate into main rotor controller // ToDo: include tail rotor power? // ToDo: add main rotor cyclic power? _main_rotor_power = ((float)(abs(_collective_out - _collective_mid_pwm)) / _collective_range); _main_rotor.set_motor_load(_main_rotor_power); // swashplate servos _swash_servo_1.servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_swash_servo_1.radio_trim-1500); _swash_servo_2.servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_swash_servo_2.radio_trim-1500); if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_H1) { _swash_servo_1.servo_out += 500; _swash_servo_2.servo_out += 500; } _swash_servo_3.servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_swash_servo_3.radio_trim-1500); // use servo_out to calculate pwm_out and radio_out _swash_servo_1.calc_pwm(); _swash_servo_2.calc_pwm(); _swash_servo_3.calc_pwm(); hal.rcout->cork(); // actually move the servos hal.rcout->write(AP_MOTORS_MOT_1, _swash_servo_1.radio_out); hal.rcout->write(AP_MOTORS_MOT_2, _swash_servo_2.radio_out); hal.rcout->write(AP_MOTORS_MOT_3, _swash_servo_3.radio_out); // update the yaw rate using the tail rotor/servo move_yaw(yaw_out + yaw_offset); hal.rcout->push(); } // move_yaw void AP_MotorsHeli_Single::move_yaw(int16_t yaw_out) { _yaw_servo.servo_out = constrain_int16(yaw_out, -4500, 4500); if (_yaw_servo.servo_out != yaw_out) { limit.yaw = true; } _yaw_servo.calc_pwm(); hal.rcout->write(AP_MOTORS_MOT_4, _yaw_servo.radio_out); if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) { // output gain to exernal gyro if (_acro_tail && _ext_gyro_gain_acro > 0) { write_aux(_ext_gyro_gain_acro); } else { write_aux(_ext_gyro_gain_std); } } else if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH && _main_rotor.get_desired_speed() > 0) { // output yaw servo to tail rsc write_aux(_yaw_servo.servo_out); } } // write_aux - outputs pwm onto output aux channel (ch7) // servo_out parameter is of the range 0 ~ 1000 void AP_MotorsHeli_Single::write_aux(int16_t servo_out) { _servo_aux.servo_out = servo_out; _servo_aux.calc_pwm(); hal.rcout->write(AP_MOTORS_HELI_SINGLE_AUX, _servo_aux.radio_out); } // servo_test - move servos through full range of movement void AP_MotorsHeli_Single::servo_test() { _servo_test_cycle_time += 1.0f / _loop_rate; if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back (_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){ _pitch_test += (4500 / (_loop_rate/2)); _oscillate_angle += 8 * M_PI_F / _loop_rate; _yaw_test = 2250 * sinf(_oscillate_angle); } else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around (_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){ _oscillate_angle += M_PI_F / (2 * _loop_rate); _roll_test = 4500 * sinf(_oscillate_angle); _pitch_test = 4500 * cosf(_oscillate_angle); _yaw_test = 4500 * sinf(_oscillate_angle); } else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level (_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){ _pitch_test -= (4500 / (_loop_rate/2)); _oscillate_angle += 8 * M_PI_F / _loop_rate; _yaw_test = 2250 * sinf(_oscillate_angle); } else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top _collective_test += (1000 / _loop_rate); _oscillate_angle += 2 * M_PI_F / _loop_rate; _yaw_test = 4500 * sinf(_oscillate_angle); } else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom _collective_test -= (1000 / _loop_rate); _oscillate_angle += 2 * M_PI_F / _loop_rate; _yaw_test = 4500 * sinf(_oscillate_angle); } else { // reset cycle _servo_test_cycle_time = 0.0f; _oscillate_angle = 0.0f; _collective_test = 0.0f; _roll_test = 0.0f; _pitch_test = 0.0f; _yaw_test = 0.0f; // decrement servo test cycle counter at the end of the cycle if (_servo_test_cycle_counter > 0){ _servo_test_cycle_counter--; } } // over-ride servo commands to move servos through defined ranges _throttle_control_input = _collective_test; _roll_control_input = _roll_test; _pitch_control_input = _pitch_test; _yaw_control_input = _yaw_test; } // parameter_check - check if helicopter specific parameters are sensible bool AP_MotorsHeli_Single::parameter_check(bool display_msg) const { // returns false if Phase Angle is outside of range if ((_phase_angle > 90) || (_phase_angle < -90)){ if (display_msg) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_PHANG out of range"); } return false; } // returns false if Acro External Gyro Gain is outside of range if ((_ext_gyro_gain_acro < 0) || (_ext_gyro_gain_acro > 1000)){ if (display_msg) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_GYR_GAIN_ACRO out of range"); } return false; } // returns false if Standard External Gyro Gain is outside of range if ((_ext_gyro_gain_std < 0) || (_ext_gyro_gain_std > 1000)){ if (display_msg) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_GYR_GAIN out of range"); } return false; } // check parent class parameters return AP_MotorsHeli::parameter_check(display_msg); }