/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // // Unit tests for the AP_Math polygon code // #include #include const AP_HAL::HAL& hal = AP_HAL::get_HAL(); static const struct { Vector2f wp1, wp2, location; bool passed; } test_points[] = { { Vector2f(-35.3647759314918f, 149.16265692810987f), Vector2f(-35.36279922658029f, 149.16352169591426f), Vector2f(-35.36214956969903f, 149.16461410046492f), true }, { Vector2f(-35.36438601157189f, 149.16613916088568f), Vector2f(-35.364432558610254f, 149.16287313113048f), Vector2f(-35.36491510034746f, 149.16365837225004f), false }, { Vector2f(0, 0), Vector2f(0, 1), Vector2f(0, 2), true }, { Vector2f(0, 0), Vector2f(0, 2), Vector2f(0, 1), false }, { Vector2f(0, 0), Vector2f(1, 0), Vector2f(2, 0), true }, { Vector2f(0, 0), Vector2f(2, 0), Vector2f(1, 0), false }, { Vector2f(0, 0), Vector2f(-1, 1), Vector2f(-2, 2), true }, }; static struct Location location_from_point(Vector2f pt) { struct Location loc = {0}; loc.lat = pt.x * 1.0e7f; loc.lng = pt.y * 1.0e7f; return loc; } static void test_passed_waypoint(void) { hal.console->println("waypoint tests starting"); for (uint8_t i=0; iprintf("Failed waypoint test %u\n", (unsigned)i); return; } } hal.console->println("waypoint tests OK"); } static void test_one_offset(const struct Location &loc, float ofs_north, float ofs_east, float dist, float bearing) { struct Location loc2; float dist2, bearing2; loc2 = loc; uint32_t t1 = AP_HAL::micros(); location_offset(loc2, ofs_north, ofs_east); hal.console->printf("location_offset took %u usec\n", (unsigned)(AP_HAL::micros() - t1)); dist2 = get_distance(loc, loc2); bearing2 = get_bearing_cd(loc, loc2) * 0.01f; float brg_error = bearing2-bearing; if (brg_error > 180) { brg_error -= 360; } else if (brg_error < -180) { brg_error += 360; } if (fabsf(dist - dist2) > 1.0f || brg_error > 1.0f) { hal.console->printf("Failed offset test brg_error=%f dist_error=%f\n", brg_error, dist-dist2); } } static const struct { float ofs_north, ofs_east, distance, bearing; } test_offsets[] = { { 1000, 1000, sqrt(2.0f)*1000, 45 }, { 1000, -1000, sqrt(2.0f)*1000, -45 }, { 1000, 0, 1000, 0 }, { 0, 1000, 1000, 90 }, }; static void test_offset(void) { struct Location loc; loc.lat = -35*1.0e7f; loc.lng = 149*1.0e7f; for (uint8_t i=0; iprintf("1 degree lat dist=%.4f\n", get_distance(loc, loc2)); loc2 = loc; loc2.lng += 10000000; v2 = Vector2f(loc2.lat*1.0e-7f, loc2.lng*1.0e-7f); hal.console->printf("1 degree lng dist=%.4f\n", get_distance(loc, loc2)); for (int32_t i=0; i<100; i++) { loc2 = loc; loc2.lat += i; v2 = Vector2f((loc.lat+i)*1.0e-7f, loc.lng*1.0e-7f); if (v2.x != v.x || v2.y != v.y) { hal.console->printf("lat v2 != v at i=%d dist=%.4f\n", (int)i, get_distance(loc, loc2)); break; } } for (int32_t i=0; i<100; i++) { loc2 = loc; loc2.lng += i; v2 = Vector2f(loc.lat*1.0e-7f, (loc.lng+i)*1.0e-7f); if (v2.x != v.x || v2.y != v.y) { hal.console->printf("lng v2 != v at i=%d dist=%.4f\n", (int)i, get_distance(loc, loc2)); break; } } for (int32_t i=0; i<100; i++) { loc2 = loc; loc2.lat -= i; v2 = Vector2f((loc.lat-i)*1.0e-7f, loc.lng*1.0e-7f); if (v2.x != v.x || v2.y != v.y) { hal.console->printf("-lat v2 != v at i=%d dist=%.4f\n", (int)i, get_distance(loc, loc2)); break; } } for (int32_t i=0; i<100; i++) { loc2 = loc; loc2.lng -= i; v2 = Vector2f(loc.lat*1.0e-7f, (loc.lng-i)*1.0e-7f); if (v2.x != v.x || v2.y != v.y) { hal.console->printf("-lng v2 != v at i=%d dist=%.4f\n", (int)i, get_distance(loc, loc2)); break; } } } static const struct { int32_t v, wv; } wrap_180_tests[] = { { 32000, -4000 }, { 1500 + 100*36000, 1500 }, { -1500 - 100*36000, -1500 }, }; static const struct { int32_t v, wv; } wrap_360_tests[] = { { 32000, 32000 }, { 1500 + 100*36000, 1500 }, { -1500 - 100*36000, 34500 }, }; static const struct { float v, wv; } wrap_PI_tests[] = { { 0.2f*PI, 0.2f*PI }, { 0.2f*PI + 100*PI, 0.2f*PI }, { -0.2f*PI - 100*PI, -0.2f*PI }, }; static void test_wrap_cd(void) { for (uint8_t i=0; i < ARRAY_SIZE(wrap_180_tests); i++) { int32_t r = wrap_180_cd(wrap_180_tests[i].v); if (r != wrap_180_tests[i].wv) { hal.console->printf("wrap_180: v=%ld wv=%ld r=%ld\n", (long)wrap_180_tests[i].v, (long)wrap_180_tests[i].wv, (long)r); } } for (uint8_t i=0; i < ARRAY_SIZE(wrap_360_tests); i++) { int32_t r = wrap_360_cd(wrap_360_tests[i].v); if (r != wrap_360_tests[i].wv) { hal.console->printf("wrap_360: v=%ld wv=%ld r=%ld\n", (long)wrap_360_tests[i].v, (long)wrap_360_tests[i].wv, (long)r); } } for (uint8_t i=0; i < ARRAY_SIZE(wrap_PI_tests); i++) { float r = wrap_PI(wrap_PI_tests[i].v); if (fabsf(r - wrap_PI_tests[i].wv) > 0.001f) { hal.console->printf("wrap_PI: v=%f wv=%f r=%f\n", wrap_PI_tests[i].v, wrap_PI_tests[i].wv, r); } } hal.console->printf("wrap_cd tests done\n"); } static void test_wgs_conversion_functions(void) { #define D2R DEG_TO_RAD_DOUBLE /* Maximum allowable error in quantities with units of length (in meters). */ #define MAX_DIST_ERROR_M 1e-6 /* Maximum allowable error in quantities with units of angle (in sec of arc). * 1 second of arc on the equator is ~31 meters. */ #define MAX_ANGLE_ERROR_SEC 1e-7 #define MAX_ANGLE_ERROR_RAD (MAX_ANGLE_ERROR_SEC*(D2R/3600.0)) /* Semi-major axis. */ #define EARTH_A 6378137.0 /* Semi-minor axis. */ #define EARTH_B 6356752.31424517929553985595703125 #define NUM_COORDS 10 Vector3d llhs[NUM_COORDS]; llhs[0] = Vector3d(0, 0, 0); /* On the Equator and Prime Meridian. */ llhs[1] = Vector3d(0, 180*D2R, 0); /* On the Equator. */ llhs[2] = Vector3d(0, 90*D2R, 0); /* On the Equator. */ llhs[3] = Vector3d(0, -90*D2R, 0); /* On the Equator. */ llhs[4] = Vector3d(90*D2R, 0, 0); /* North pole. */ llhs[5] = Vector3d(-90*D2R, 0, 0); /* South pole. */ llhs[6] = Vector3d(90*D2R, 0, 22); /* 22m above the north pole. */ llhs[7] = Vector3d(-90*D2R, 0, 22); /* 22m above the south pole. */ llhs[8] = Vector3d(0, 0, 22); /* 22m above the Equator and Prime Meridian. */ llhs[9] = Vector3d(0, 180*D2R, 22); /* 22m above the Equator. */ Vector3d ecefs[NUM_COORDS]; ecefs[0] = Vector3d(EARTH_A, 0, 0); ecefs[1] = Vector3d(-EARTH_A, 0, 0); ecefs[2] = Vector3d(0, EARTH_A, 0); ecefs[3] = Vector3d(0, -EARTH_A, 0); ecefs[4] = Vector3d(0, 0, EARTH_B); ecefs[5] = Vector3d(0, 0, -EARTH_B); ecefs[6] = Vector3d(0, 0, (EARTH_B+22)); ecefs[7] = Vector3d(0, 0, -(EARTH_B+22)); ecefs[8] = Vector3d((22+EARTH_A), 0, 0); ecefs[9] = Vector3d(-(22+EARTH_A), 0, 0); hal.console->printf("TESTING wgsllh2ecef\n"); for (int i = 0; i < NUM_COORDS; i++) { Vector3d ecef; wgsllh2ecef(llhs[i], ecef); double x_err = fabs(ecef[0] - ecefs[i][0]); double y_err = fabs(ecef[1] - ecefs[i][1]); double z_err = fabs(ecef[2] - ecefs[i][2]); if ((x_err < MAX_DIST_ERROR_M) && (y_err < MAX_DIST_ERROR_M) && (z_err < MAX_DIST_ERROR_M)) { hal.console->printf("passing llh to ecef test %d\n", i); } else { hal.console->printf("failed llh to ecef test %d: ", i); hal.console->printf("(%f - %f) (%f - %f) (%f - %f) => %.10f %.10f %.10f\n", ecef[0], ecefs[i][0], ecef[1], ecefs[i][1], ecef[2], ecefs[i][2], x_err, y_err, z_err); } } hal.console->printf("TESTING wgsecef2llh\n"); for (int i = 0; i < NUM_COORDS; i++) { Vector3d llh; wgsecef2llh(ecefs[i], llh); double lat_err = fabs(llh[0] - llhs[i][0]); double lon_err = fabs(llh[1] - llhs[i][1]); double hgt_err = fabs(llh[2] - llhs[i][2]); if ((lat_err < MAX_ANGLE_ERROR_RAD) && (lon_err < MAX_ANGLE_ERROR_RAD) && (hgt_err < MAX_DIST_ERROR_M)) { hal.console->printf("passing exef to llh test %d\n", i); } else { hal.console->printf("failed ecef to llh test %d: ", i); hal.console->printf("%.10f %.10f %.10f\n", lat_err, lon_err, hgt_err); } } } /* * polygon tests */ void setup(void) { test_passed_waypoint(); test_offset(); test_accuracy(); test_wrap_cd(); test_wgs_conversion_functions(); hal.console->printf("ALL TESTS DONE\n"); } void loop(void){} AP_HAL_MAIN();