/* APM_DCM_FW.cpp - DCM AHRS Library, fixed wing version, for Ardupilot Mega Code by Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com This library works with the ArduPilot Mega and "Oilpan" This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Methods: update_DCM(_G_Dt) : Updates the AHRS by integrating the rotation matrix over time _G_Dt using the IMU object data get_gyro() : Returns gyro vector corrected for bias get_accel() : Returns accelerometer vector get_dcm_matrix() : Returns dcm matrix */ #include #define OUTPUTMODE 1 // This is just used for debugging, remove later #define ToRad(x) (x*0.01745329252) // *pi/180 #define ToDeg(x) (x*57.2957795131) // *180/pi #define Kp_ROLLPITCH 0.05967 // .0014 * 418/9.81 Pitch&Roll Drift Correction Proportional Gain #define Ki_ROLLPITCH 0.00001278 // 0.0000003 * 418/9.81 Pitch&Roll Drift Correction Integrator Gain #define Kp_YAW 0.8 // Yaw Drift Correction Porportional Gain #define Ki_YAW 0.00004 // Yaw Drift CorrectionIntegrator Gain #define SPEEDFILT 300 // centimeters/second #define ADC_CONSTRAINT 900 void AP_DCM::set_compass(Compass *compass) { _compass = compass; } /**************************************************/ void AP_DCM::update_DCM(float _G_Dt) { _gyro_vector = _imu->get_gyro(); // Get current values for IMU sensors _accel_vector = _imu->get_accel(); // Get current values for IMU sensors matrix_update(_G_Dt); // Integrate the DCM matrix normalize(); // Normalize the DCM matrix drift_correction(); // Perform drift correction euler_angles(); // Calculate pitch, roll, yaw for stabilization and navigation } /**************************************************/ Vector3f AP_DCM::get_gyro(void) { return _omega_integ_corr; } // We return the raw gyro vector corrected for bias /**************************************************/ Vector3f AP_DCM::get_accel(void) { return _accel_vector; } /**************************************************/ Matrix3f AP_DCM::get_dcm_matrix(void) { return _dcm_matrix; } /**************************************************/ Matrix3f AP_DCM::get_dcm_transposed(void) { return _dcm_matrix.transpose(); } //For Debugging /* void printm(const char *l, Matrix3f &m) { Serial.println(" "); Serial.println(l); Serial.print(m.a.x, 12); Serial.print(" "); Serial.print(m.a.y, 12); Serial.print(" "); Serial.println(m.a.z, 12); Serial.print(m.b.x, 12); Serial.print(" "); Serial.print(m.b.y, 12); Serial.print(" "); Serial.println(m.b.z, 12); Serial.print(m.c.x, 12); Serial.print(" "); Serial.print(m.c.y, 12); Serial.print(" "); Serial.println(m.c.z, 12); Serial.print(*(uint32_t *)&(m.a.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.a.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.a.z), HEX); Serial.print(*(uint32_t *)&(m.b.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.b.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.b.z), HEX); Serial.print(*(uint32_t *)&(m.c.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.c.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.c.z), HEX); } */ /**************************************************/ void AP_DCM::matrix_update(float _G_Dt) { Matrix3f update_matrix; Matrix3f temp_matrix; //Record when you saturate any of the gyros. if((fabs(_gyro_vector.x) >= radians(300)) || (fabs(_gyro_vector.y) >= radians(300)) || (fabs(_gyro_vector.z) >= radians(300))){ gyro_sat_count++; } _omega_integ_corr = _gyro_vector + _omega_I; // Used for _centripetal correction (theoretically better than _omega) _omega = _omega_integ_corr + _omega_P; // Equation 16, adding proportional and integral correction terms if(_centripetal){ accel_adjust(); // Remove _centripetal acceleration. } #if OUTPUTMODE == 1 update_matrix.a.x = 0; update_matrix.a.y = -_G_Dt * _omega.z; // -delta Theta z update_matrix.a.z = _G_Dt * _omega.y; // delta Theta y update_matrix.b.x = _G_Dt * _omega.z; // delta Theta z update_matrix.b.y = 0; update_matrix.b.z = -_G_Dt * _omega.x; // -delta Theta x update_matrix.c.x = -_G_Dt * _omega.y; // -delta Theta y update_matrix.c.y = _G_Dt * _omega.x; // delta Theta x update_matrix.c.z = 0; #else // Uncorrected data (no drift correction) update_matrix.a.x = 0; update_matrix.a.y = -_G_Dt * _gyro_vector.z; update_matrix.a.z = _G_Dt * _gyro_vector.y; update_matrix.b.x = _G_Dt * _gyro_vector.z; update_matrix.b.y = 0; update_matrix.b.z = -_G_Dt * _gyro_vector.x; update_matrix.c.x = -_G_Dt * _gyro_vector.y; update_matrix.c.y = _G_Dt * _gyro_vector.x; update_matrix.c.z = 0; #endif temp_matrix = _dcm_matrix * update_matrix; _dcm_matrix = _dcm_matrix + temp_matrix; // Equation 17 } /**************************************************/ void AP_DCM::accel_adjust(void) { Vector3f veloc, temp; float vel; veloc.x = _gps->ground_speed / 100; // We are working with acceleration in m/s^2 units // We are working with a modified version of equation 26 as our IMU object reports acceleration in the positive axis direction as positive //_accel_vector -= _omega_integ_corr % _veloc; // Equation 26 This line is giving the compiler a problem so we break it up below temp.x = 0; temp.y = _omega_integ_corr.z * veloc.x; // only computing the non-zero terms temp.z = -1.0f * _omega_integ_corr.y * veloc.x; // After looking at the compiler issue lets remove _veloc and simlify _accel_vector -= temp; } /************************************************* Direction Cosine Matrix IMU: Theory William Premerlani and Paul Bizard Numerical errors will gradually reduce the orthogonality conditions expressed by equation 5 to approximations rather than identities. In effect, the axes in the two frames of reference no longer describe a rigid body. Fortunately, numerical error accumulates very slowly, so it is a simple matter to stay ahead of it. We call the process of enforcing the orthogonality conditions ÒrenormalizationÓ. */ void AP_DCM::normalize(void) { float error = 0; Vector3f temporary[3]; int problem = 0; error = _dcm_matrix.a * _dcm_matrix.b; // eq.18 temporary[0] = _dcm_matrix.b; temporary[1] = _dcm_matrix.a; temporary[0] = _dcm_matrix.a - (temporary[0] * (0.5f * error)); // eq.19 temporary[1] = _dcm_matrix.b - (temporary[1] * (0.5f * error)); // eq.19 temporary[2] = temporary[0] % temporary[1]; // c= a x b // eq.20 _dcm_matrix.a = renorm(temporary[0], problem); _dcm_matrix.b = renorm(temporary[1], problem); _dcm_matrix.c = renorm(temporary[2], problem); if (problem == 1) { // Our solution is blowing up and we will force back to initial condition. Hope we are not upside down! _dcm_matrix.a.x = 1.0f; _dcm_matrix.a.y = 0.0f; _dcm_matrix.a.z = 0.0f; _dcm_matrix.b.x = 0.0f; _dcm_matrix.b.y = 1.0f; _dcm_matrix.b.z = 0.0f; _dcm_matrix.c.x = 0.0f; _dcm_matrix.c.y = 0.0f; _dcm_matrix.c.z = 1.0f; } } /**************************************************/ Vector3f AP_DCM::renorm(Vector3f const &a, int &problem) { float renorm; renorm = a * a; if (renorm < 1.5625f && renorm > 0.64f) { // Check if we are OK to use Taylor expansion renorm = 0.5 * (3 - renorm); // eq.21 } else if (renorm < 100.0f && renorm > 0.01f) { renorm = 1.0 / sqrt(renorm); renorm_sqrt_count++; } else { problem = 1; renorm_blowup_count++; } return(a * renorm); } /**************************************************/ void AP_DCM::drift_correction(void) { //Compensation the Roll, Pitch and Yaw drift. //float mag_heading_x; //float mag_heading_y; float error_course; float accel_magnitude; float accel_weight; float integrator_magnitude; //static float scaled_omega_P[3]; //static float scaled_omega_I[3]; static bool in_motion = false; Matrix3f rot_mat; //*****Roll and Pitch*************** // Calculate the magnitude of the accelerometer vector accel_magnitude = _accel_vector.length() / 9.80665f; // Dynamic weighting of accelerometer info (reliability filter) // Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0) accel_weight = constrain(1 - 2 * fabs(1 - accel_magnitude), 0, 1); // // We monitor the amount that the accelerometer based drift correction is deweighted for performance reporting _health += constrain((0.02 * (accel_weight - .5)), 0, 1); // adjust the ground of reference _error_roll_pitch = _dcm_matrix.c % _accel_vector; // Equation 27 *** sign changed from prev implementation??? // error_roll_pitch are in Accel m/s^2 units // Limit max error_roll_pitch to limit max omega_P and omega_I _error_roll_pitch.x = constrain(_error_roll_pitch.x, -1.17f, 1.17f); _error_roll_pitch.y = constrain(_error_roll_pitch.y, -1.17f, 1.17f); _error_roll_pitch.z = constrain(_error_roll_pitch.z, -1.17f, 1.17f); _omega_P = _error_roll_pitch * (Kp_ROLLPITCH * accel_weight); _omega_I += _error_roll_pitch * (Ki_ROLLPITCH * accel_weight); //*****YAW*************** if (_compass) { // We make the gyro YAW drift correction based on compass magnetic heading error_course = (_dcm_matrix.a.x * _compass->heading_y) - (_dcm_matrix.b.x * _compass->heading_x); // Equation 23, Calculating YAW error } else { // Use GPS Ground course to correct yaw gyro drift if (_gps->ground_speed >= SPEEDFILT) { _course_over_ground_x = cos(ToRad(_gps->ground_course/100.0)); _course_over_ground_y = sin(ToRad(_gps->ground_course/100.0)); if(in_motion) { error_course = (_dcm_matrix.a.x * _course_over_ground_y) - (_dcm_matrix.b.x * _course_over_ground_x); // Equation 23, Calculating YAW error } else { float cos_psi_err, sin_psi_err; // This is the case for when we first start moving and reset the DCM so that yaw matches the gps ground course // This is just to get a reasonable estimate faster yaw = atan2(_dcm_matrix.b.x, _dcm_matrix.a.x); cos_psi_err = cos(ToRad(_gps->ground_course/100.0) - yaw); sin_psi_err = sin(ToRad(_gps->ground_course/100.0) - yaw); // Rxx = cos psi err, Rxy = - sin psi err, Rxz = 0 // Ryx = sin psi err, Ryy = cos psi err, Ryz = 0 // Rzx = Rzy = 0, Rzz = 1 rot_mat.a.x = cos_psi_err; rot_mat.a.y = - sin_psi_err; rot_mat.b.x = sin_psi_err; rot_mat.b.y = cos_psi_err; rot_mat.a.z = 0; rot_mat.b.z = 0; rot_mat.c.x = 0; rot_mat.c.y = 0; rot_mat.c.z = 1.0; _dcm_matrix = rot_mat * _dcm_matrix; in_motion = true; error_course = 0; } } else { error_course = 0; in_motion = false; } } _error_yaw = _dcm_matrix.c * error_course; // Equation 24, Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position. _omega_P += _error_yaw * Kp_YAW; // Adding yaw correction to proportional correction vector. _omega_I += _error_yaw * Ki_YAW; // adding yaw correction to integrator correction vector. // Here we will place a limit on the integrator so that the integrator cannot ever exceed half the saturation limit of the gyros integrator_magnitude = _omega_I.length(); if (integrator_magnitude > radians(300)) { _omega_I *= (0.5f * radians(300) / integrator_magnitude); // Why do we have this discontinuous? EG, why the 0.5? } //Serial.print("*"); } /**************************************************/ void AP_DCM::euler_angles(void) { #if (OUTPUTMODE == 2) // Only accelerometer info (debugging purposes) roll = atan2(_accel_vector.y, -_accel_vector.z); // atan2(acc_y, acc_z) pitch = asin((_accel_vector.x) / (double)9.81); // asin(acc_x) yaw = 0; #else pitch = -asin(_dcm_matrix.c.x); roll = atan2(_dcm_matrix.c.y, _dcm_matrix.c.z); yaw = atan2(_dcm_matrix.b.x, _dcm_matrix.a.x); #endif roll_sensor = degrees(roll) * 100; pitch_sensor = degrees(pitch) * 100; yaw_sensor = degrees(yaw) * 100; if (yaw_sensor < 0) yaw_sensor += 36000; } /**************************************************/ float AP_DCM::get_health(void) { return _health; }