/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // UAVCAN GPS driver // #include #if HAL_ENABLE_DRONECAN_DRIVERS #include "AP_GPS_DroneCAN.h" #include #include #include #include #include #include #define GPS_PPS_EMULATION 0 extern const AP_HAL::HAL& hal; #define GPS_UAVCAN_DEBUGGING 0 #if GPS_UAVCAN_DEBUGGING #if defined(HAL_BUILD_AP_PERIPH) extern "C" { void can_printf(const char *fmt, ...); } # define Debug(fmt, args ...) do {can_printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args);} while(0) #else # define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0) #endif #else # define Debug(fmt, args ...) #endif #define LOG_TAG "GPS" #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #define NATIVE_TIME_OFFSET (AP_HAL::micros64() - AP_HAL::native_micros64()) #else #define NATIVE_TIME_OFFSET 0 #endif AP_GPS_DroneCAN::DetectedModules AP_GPS_DroneCAN::_detected_modules[]; HAL_Semaphore AP_GPS_DroneCAN::_sem_registry; // Member Methods AP_GPS_DroneCAN::AP_GPS_DroneCAN(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_GPS::GPS_Role _role) : AP_GPS_Backend(_gps, _state, nullptr), interim_state(_state), role(_role) { param_int_cb = FUNCTOR_BIND_MEMBER(&AP_GPS_DroneCAN::handle_param_get_set_response_int, bool, AP_DroneCAN*, const uint8_t, const char*, int32_t &); param_float_cb = FUNCTOR_BIND_MEMBER(&AP_GPS_DroneCAN::handle_param_get_set_response_float, bool, AP_DroneCAN*, const uint8_t, const char*, float &); param_save_cb = FUNCTOR_BIND_MEMBER(&AP_GPS_DroneCAN::handle_param_save_response, void, AP_DroneCAN*, const uint8_t, bool); } AP_GPS_DroneCAN::~AP_GPS_DroneCAN() { WITH_SEMAPHORE(_sem_registry); _detected_modules[_detected_module].driver = nullptr; #if GPS_MOVING_BASELINE if (rtcm3_parser != nullptr) { delete rtcm3_parser; } #endif } void AP_GPS_DroneCAN::subscribe_msgs(AP_DroneCAN* ap_dronecan) { if (ap_dronecan == nullptr) { return; } if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_fix2_msg_trampoline, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("status_sub"); } if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_aux_msg_trampoline, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("status_sub"); } if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_heading_msg_trampoline, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("status_sub"); } if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_status_msg_trampoline, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("status_sub"); } #if GPS_MOVING_BASELINE if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_moving_baseline_msg_trampoline, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("moving_baseline_sub"); } if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_relposheading_msg_trampoline, ap_dronecan->get_driver_index()) == nullptr) { AP_BoardConfig::allocation_error("relposheading_sub"); } #endif } AP_GPS_Backend* AP_GPS_DroneCAN::probe(AP_GPS &_gps, AP_GPS::GPS_State &_state) { WITH_SEMAPHORE(_sem_registry); int8_t found_match = -1, last_match = -1; AP_GPS_DroneCAN* backend = nullptr; bool bad_override_config = false; for (int8_t i = GPS_MAX_RECEIVERS - 1; i >= 0; i--) { if (_detected_modules[i].driver == nullptr && _detected_modules[i].ap_dronecan != nullptr) { if (_gps._override_node_id[_state.instance] != 0 && _gps._override_node_id[_state.instance] != _detected_modules[i].node_id) { continue; // This device doesn't match the correct node } last_match = found_match; for (uint8_t j = 0; j < GPS_MAX_RECEIVERS; j++) { if (_detected_modules[i].node_id == _gps._override_node_id[j] && (j != _state.instance)) { //wrong instance found_match = -1; break; } found_match = i; } // Handle Duplicate overrides for (uint8_t j = 0; j < GPS_MAX_RECEIVERS; j++) { if (_gps._override_node_id[i] != 0 && (i != j) && _gps._override_node_id[i] == _gps._override_node_id[j]) { bad_override_config = true; } } if (bad_override_config) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Same Node Id %lu set for multiple GPS", (unsigned long int)_gps._override_node_id[i].get()); last_match = i; } if (found_match == -1) { found_match = last_match; continue; } break; } } if (found_match == -1) { return NULL; } // initialise the backend based on the UAVCAN Moving baseline selection switch (_gps.get_type(_state.instance)) { case AP_GPS::GPS_TYPE_UAVCAN: backend = new AP_GPS_DroneCAN(_gps, _state, AP_GPS::GPS_ROLE_NORMAL); break; #if GPS_MOVING_BASELINE case AP_GPS::GPS_TYPE_UAVCAN_RTK_BASE: backend = new AP_GPS_DroneCAN(_gps, _state, AP_GPS::GPS_ROLE_MB_BASE); break; case AP_GPS::GPS_TYPE_UAVCAN_RTK_ROVER: backend = new AP_GPS_DroneCAN(_gps, _state, AP_GPS::GPS_ROLE_MB_ROVER); break; #endif default: return NULL; } if (backend == nullptr) { AP::can().log_text(AP_CANManager::LOG_ERROR, LOG_TAG, "Failed to register DroneCAN GPS Node %d on Bus %d\n", _detected_modules[found_match].node_id, _detected_modules[found_match].ap_dronecan->get_driver_index()); } else { _detected_modules[found_match].driver = backend; backend->_detected_module = found_match; AP::can().log_text(AP_CANManager::LOG_INFO, LOG_TAG, "Registered DroneCAN GPS Node %d on Bus %d as instance %d\n", _detected_modules[found_match].node_id, _detected_modules[found_match].ap_dronecan->get_driver_index(), _state.instance); snprintf(backend->_name, ARRAY_SIZE(backend->_name), "DroneCAN%u-%u", _detected_modules[found_match].ap_dronecan->get_driver_index()+1, _detected_modules[found_match].node_id); _detected_modules[found_match].instance = _state.instance; for (uint8_t i=0; i < GPS_MAX_RECEIVERS; i++) { if (_detected_modules[found_match].node_id == AP::gps()._node_id[i]) { if (i == _state.instance) { // Nothing to do here break; } // else swap uint8_t tmp = AP::gps()._node_id[_state.instance].get(); AP::gps()._node_id[_state.instance].set_and_notify(_detected_modules[found_match].node_id); AP::gps()._node_id[i].set_and_notify(tmp); } } #if GPS_MOVING_BASELINE if (backend->role == AP_GPS::GPS_ROLE_MB_BASE) { backend->rtcm3_parser = new RTCM3_Parser; if (backend->rtcm3_parser == nullptr) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "DroneCAN%u-%u: failed RTCMv3 parser allocation", _detected_modules[found_match].ap_dronecan->get_driver_index()+1, _detected_modules[found_match].node_id); } } #endif // GPS_MOVING_BASELINE } return backend; } bool AP_GPS_DroneCAN::backends_healthy(char failure_msg[], uint16_t failure_msg_len) { for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) { bool overriden_node_found = false; bool bad_override_config = false; if (AP::gps()._override_node_id[i] == 0) { //anything goes continue; } for (uint8_t j = 0; j < GPS_MAX_RECEIVERS; j++) { if (AP::gps()._override_node_id[i] == AP::gps()._override_node_id[j] && (i != j)) { bad_override_config = true; break; } if (i == _detected_modules[j].instance && _detected_modules[j].driver) { if (AP::gps()._override_node_id[i] == _detected_modules[j].node_id) { overriden_node_found = true; break; } } } if (bad_override_config) { snprintf(failure_msg, failure_msg_len, "Same Node Id %lu set for multiple GPS", (unsigned long int)AP::gps()._override_node_id[i].get()); return false; } if (!overriden_node_found) { snprintf(failure_msg, failure_msg_len, "Selected GPS Node %lu not set as instance %d", (unsigned long int)AP::gps()._override_node_id[i].get(), i + 1); return false; } } return true; } AP_GPS_DroneCAN* AP_GPS_DroneCAN::get_dronecan_backend(AP_DroneCAN* ap_dronecan, uint8_t node_id) { if (ap_dronecan == nullptr) { return nullptr; } for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) { if (_detected_modules[i].driver != nullptr && _detected_modules[i].ap_dronecan == ap_dronecan && _detected_modules[i].node_id == node_id) { return _detected_modules[i].driver; } } bool already_detected = false; // Check if there's an empty spot for possible registeration for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) { if (_detected_modules[i].ap_dronecan == ap_dronecan && _detected_modules[i].node_id == node_id) { // Already Detected already_detected = true; break; } } if (!already_detected) { for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) { if (_detected_modules[i].ap_dronecan == nullptr) { _detected_modules[i].ap_dronecan = ap_dronecan; _detected_modules[i].node_id = node_id; // Just set the Node ID in order of appearance // This will be used to set select ids AP::gps()._node_id[i].set_and_notify(node_id); break; } } } struct DetectedModules tempslot; // Sort based on the node_id, larger values first // we do this, so that we have repeatable GPS // registration for (uint8_t i = 1; i < GPS_MAX_RECEIVERS; i++) { for (uint8_t j = i; j > 0; j--) { if (_detected_modules[j].node_id > _detected_modules[j-1].node_id) { tempslot = _detected_modules[j]; _detected_modules[j] = _detected_modules[j-1]; _detected_modules[j-1] = tempslot; // also fix the _detected_module in the driver so that RTCM injection // can determine if it has the bus to itself if (_detected_modules[j].driver) { _detected_modules[j].driver->_detected_module = j; } if (_detected_modules[j-1].driver) { _detected_modules[j-1].driver->_detected_module = j-1; } } } } return nullptr; } /* handle velocity element of message */ void AP_GPS_DroneCAN::handle_velocity(const float vx, const float vy, const float vz) { if (!isnanf(vx)) { const Vector3f vel(vx, vy, vz); interim_state.velocity = vel; velocity_to_speed_course(interim_state); // assume we have vertical velocity if we ever get a non-zero Z velocity if (!isnan(vel.z) && !is_zero(vel.z)) { interim_state.have_vertical_velocity = true; } else { interim_state.have_vertical_velocity = state.have_vertical_velocity; } } else { interim_state.have_vertical_velocity = false; } } void AP_GPS_DroneCAN::handle_fix2_msg(const uavcan_equipment_gnss_Fix2& msg, uint64_t timestamp_usec) { bool process = false; seen_fix2 = true; WITH_SEMAPHORE(sem); if (msg.status == UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_NO_FIX) { interim_state.status = AP_GPS::GPS_Status::NO_FIX; } else { if (msg.status == UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_TIME_ONLY) { interim_state.status = AP_GPS::GPS_Status::NO_FIX; } else if (msg.status == UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_2D_FIX) { interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_2D; process = true; } else if (msg.status == UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_3D_FIX) { interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D; process = true; } if (msg.gnss_time_standard == UAVCAN_EQUIPMENT_GNSS_FIX2_GNSS_TIME_STANDARD_UTC) { uint64_t epoch_ms = msg.gnss_timestamp.usec; if (epoch_ms != 0) { epoch_ms /= 1000; uint64_t gps_ms = epoch_ms - UNIX_OFFSET_MSEC; interim_state.time_week = (uint16_t)(gps_ms / AP_MSEC_PER_WEEK); interim_state.time_week_ms = (uint32_t)(gps_ms - (interim_state.time_week) * AP_MSEC_PER_WEEK); } } if (interim_state.status == AP_GPS::GPS_Status::GPS_OK_FIX_3D) { if (msg.mode == UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_DGPS) { interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D_DGPS; } else if (msg.mode == UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_RTK) { if (msg.sub_mode == UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_RTK_FLOAT) { interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FLOAT; } else if (msg.sub_mode == UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_RTK_FIXED) { interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FIXED; } } } } if (process) { Location loc = { }; loc.lat = msg.latitude_deg_1e8 / 10; loc.lng = msg.longitude_deg_1e8 / 10; loc.alt = msg.height_msl_mm / 10; interim_state.have_undulation = true; interim_state.undulation = (msg.height_msl_mm - msg.height_ellipsoid_mm) * 0.001; interim_state.location = loc; handle_velocity(msg.ned_velocity[0], msg.ned_velocity[1], msg.ned_velocity[2]); if (msg.covariance.len == 6) { if (!isnanf(msg.covariance.data[0])) { interim_state.horizontal_accuracy = sqrtf(msg.covariance.data[0]); interim_state.have_horizontal_accuracy = true; } else { interim_state.have_horizontal_accuracy = false; } if (!isnanf(msg.covariance.data[2])) { interim_state.vertical_accuracy = sqrtf(msg.covariance.data[2]); interim_state.have_vertical_accuracy = true; } else { interim_state.have_vertical_accuracy = false; } if (!isnanf(msg.covariance.data[3]) && !isnanf(msg.covariance.data[4]) && !isnanf(msg.covariance.data[5])) { interim_state.speed_accuracy = sqrtf((msg.covariance.data[3] + msg.covariance.data[4] + msg.covariance.data[5])/3); interim_state.have_speed_accuracy = true; } else { interim_state.have_speed_accuracy = false; } } interim_state.num_sats = msg.sats_used; } else { interim_state.have_vertical_velocity = false; interim_state.have_vertical_accuracy = false; interim_state.have_horizontal_accuracy = false; interim_state.have_speed_accuracy = false; interim_state.num_sats = 0; } if (!seen_aux) { // if we haven't seen an Aux message then populate vdop and // hdop from pdop. Some GPS modules don't provide the Aux message interim_state.hdop = interim_state.vdop = msg.pdop * 100.0; } if ((msg.timestamp.usec > msg.gnss_timestamp.usec) && (msg.gnss_timestamp.usec > 0)) { // we have a valid timestamp based on gnss_timestamp timescale, we can use that to correct our gps message time interim_state.last_corrected_gps_time_us = jitter_correction.correct_offboard_timestamp_usec(msg.timestamp.usec, (timestamp_usec + NATIVE_TIME_OFFSET)); interim_state.last_gps_time_ms = interim_state.last_corrected_gps_time_us/1000U; interim_state.last_corrected_gps_time_us -= msg.timestamp.usec - msg.gnss_timestamp.usec; // this is also the time the message was received on the UART on other end. interim_state.corrected_timestamp_updated = true; } else { interim_state.last_gps_time_ms = jitter_correction.correct_offboard_timestamp_usec(msg.timestamp.usec, timestamp_usec + NATIVE_TIME_OFFSET)/1000U; } #if GPS_PPS_EMULATION // Emulates a PPS signal, can be used to check how close are we to real GPS time static virtual_timer_t timeout_vt; hal.gpio->pinMode(51, 1); auto handle_timeout = [](void *arg) { (void)arg; //we are called from ISR context chSysLockFromISR(); hal.gpio->toggle(51); chSysUnlockFromISR(); }; static uint64_t next_toggle, last_toggle; next_toggle = (msg.timestamp.usec) + (1000000ULL - ((msg.timestamp.usec) % 1000000ULL)); next_toggle += jitter_correction.get_link_offset_usec(); if (next_toggle != last_toggle) { chVTSet(&timeout_vt, chTimeUS2I(next_toggle - AP_HAL::micros64()), handle_timeout, nullptr); last_toggle = next_toggle; } #endif _new_data = true; if (!seen_message) { if (interim_state.status == AP_GPS::GPS_Status::NO_GPS) { // the first time we see a fix message we change from // NO_GPS to NO_FIX, indicating to user that a DroneCAN GPS // has been seen interim_state.status = AP_GPS::GPS_Status::NO_FIX; } seen_message = true; } } void AP_GPS_DroneCAN::handle_aux_msg(const uavcan_equipment_gnss_Auxiliary& msg) { WITH_SEMAPHORE(sem); if (!isnanf(msg.hdop)) { seen_aux = true; interim_state.hdop = msg.hdop * 100.0; } if (!isnanf(msg.vdop)) { seen_aux = true; interim_state.vdop = msg.vdop * 100.0; } } void AP_GPS_DroneCAN::handle_heading_msg(const ardupilot_gnss_Heading& msg) { #if GPS_MOVING_BASELINE if (seen_relposheading && gps.mb_params[interim_state.instance].type.get() != 0) { // we prefer to use the relposheading to get yaw as it allows // the user to more easily control the relative antenna positions return; } #endif WITH_SEMAPHORE(sem); if (interim_state.gps_yaw_configured == false) { interim_state.gps_yaw_configured = msg.heading_valid; } interim_state.have_gps_yaw = msg.heading_valid; interim_state.gps_yaw = degrees(msg.heading_rad); if (interim_state.have_gps_yaw) { interim_state.gps_yaw_time_ms = AP_HAL::millis(); } interim_state.have_gps_yaw_accuracy = msg.heading_accuracy_valid; interim_state.gps_yaw_accuracy = degrees(msg.heading_accuracy_rad); } void AP_GPS_DroneCAN::handle_status_msg(const ardupilot_gnss_Status& msg) { WITH_SEMAPHORE(sem); seen_status = true; healthy = msg.healthy; status_flags = msg.status; if (error_code != msg.error_codes) { AP::logger().Write_MessageF("GPS %d: error changed (0x%08x/0x%08x)", (unsigned int)(state.instance + 1), error_code, msg.error_codes); error_code = msg.error_codes; } } #if GPS_MOVING_BASELINE /* handle moving baseline data. */ void AP_GPS_DroneCAN::handle_moving_baseline_msg(const ardupilot_gnss_MovingBaselineData& msg, uint8_t node_id) { WITH_SEMAPHORE(sem); if (role != AP_GPS::GPS_ROLE_MB_BASE) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Incorrect Role set for DroneCAN GPS, %d should be Base", node_id); return; } if (rtcm3_parser == nullptr) { return; } for (int i=0; i < msg.data.len; i++) { rtcm3_parser->read(msg.data.data[i]); } } /* handle relposheading message */ void AP_GPS_DroneCAN::handle_relposheading_msg(const ardupilot_gnss_RelPosHeading& msg, uint8_t node_id) { WITH_SEMAPHORE(sem); interim_state.gps_yaw_configured = true; seen_relposheading = true; // push raw heading data to calculate moving baseline heading states if (calculate_moving_base_yaw(interim_state, msg.reported_heading_deg, msg.relative_distance_m, msg.relative_down_pos_m)) { if (msg.reported_heading_acc_available) { interim_state.gps_yaw_accuracy = msg.reported_heading_acc_deg; } interim_state.have_gps_yaw_accuracy = msg.reported_heading_acc_available; } } // support for retrieving RTCMv3 data from a moving baseline base bool AP_GPS_DroneCAN::get_RTCMV3(const uint8_t *&bytes, uint16_t &len) { WITH_SEMAPHORE(sem); if (rtcm3_parser != nullptr) { len = rtcm3_parser->get_len(bytes); return len > 0; } return false; } // clear previous RTCM3 packet void AP_GPS_DroneCAN::clear_RTCMV3(void) { WITH_SEMAPHORE(sem); if (rtcm3_parser != nullptr) { rtcm3_parser->clear_packet(); } } #endif // GPS_MOVING_BASELINE void AP_GPS_DroneCAN::handle_fix2_msg_trampoline(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_gnss_Fix2& msg) { WITH_SEMAPHORE(_sem_registry); AP_GPS_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id); if (driver != nullptr) { driver->handle_fix2_msg(msg, transfer.timestamp_usec); } } void AP_GPS_DroneCAN::handle_aux_msg_trampoline(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_gnss_Auxiliary& msg) { WITH_SEMAPHORE(_sem_registry); AP_GPS_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id); if (driver != nullptr) { driver->handle_aux_msg(msg); } } void AP_GPS_DroneCAN::handle_heading_msg_trampoline(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const ardupilot_gnss_Heading& msg) { WITH_SEMAPHORE(_sem_registry); AP_GPS_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id); if (driver != nullptr) { driver->handle_heading_msg(msg); } } void AP_GPS_DroneCAN::handle_status_msg_trampoline(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const ardupilot_gnss_Status& msg) { WITH_SEMAPHORE(_sem_registry); AP_GPS_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id); if (driver != nullptr) { driver->handle_status_msg(msg); } } #if GPS_MOVING_BASELINE // Moving Baseline msg trampoline void AP_GPS_DroneCAN::handle_moving_baseline_msg_trampoline(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const ardupilot_gnss_MovingBaselineData& msg) { WITH_SEMAPHORE(_sem_registry); AP_GPS_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id); if (driver != nullptr) { driver->handle_moving_baseline_msg(msg, transfer.source_node_id); } } // RelPosHeading msg trampoline void AP_GPS_DroneCAN::handle_relposheading_msg_trampoline(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const ardupilot_gnss_RelPosHeading& msg) { WITH_SEMAPHORE(_sem_registry); AP_GPS_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id); if (driver != nullptr) { driver->handle_relposheading_msg(msg, transfer.source_node_id); } } #endif bool AP_GPS_DroneCAN::do_config() { AP_DroneCAN *ap_dronecan = _detected_modules[_detected_module].ap_dronecan; if (ap_dronecan == nullptr) { return false; } uint8_t node_id = _detected_modules[_detected_module].node_id; switch(cfg_step) { case STEP_SET_TYPE: ap_dronecan->get_parameter_on_node(node_id, "GPS_TYPE", ¶m_int_cb); break; case STEP_SET_MB_CAN_TX: if (role != AP_GPS::GPS_Role::GPS_ROLE_NORMAL) { ap_dronecan->get_parameter_on_node(node_id, "GPS_MB_ONLY_PORT", ¶m_int_cb); } else { cfg_step++; } break; case STEP_SAVE_AND_REBOOT: if (requires_save_and_reboot) { ap_dronecan->save_parameters_on_node(node_id, ¶m_save_cb); } else { cfg_step++; } break; case STEP_FINISHED: return true; default: break; } return false; } // Consume new data and mark it received bool AP_GPS_DroneCAN::read(void) { if (gps._auto_config >= AP_GPS::GPS_AUTO_CONFIG_ENABLE_ALL) { if (!do_config()) { return false; } } WITH_SEMAPHORE(sem); if (_new_data) { _new_data = false; // the encoding of accuracies in DroneCAN can result in infinite // values. These cause problems with blending. Use 1000m and 1000m/s instead interim_state.horizontal_accuracy = MIN(interim_state.horizontal_accuracy, 1000.0); interim_state.vertical_accuracy = MIN(interim_state.vertical_accuracy, 1000.0); interim_state.speed_accuracy = MIN(interim_state.speed_accuracy, 1000.0); state = interim_state; if (interim_state.last_corrected_gps_time_us) { // If we were able to get a valid last_corrected_gps_time_us // we have had a valid GPS message time, from which we calculate // the time of week. _last_itow_ms = interim_state.time_week_ms; _have_itow = true; } return true; } if (!seen_message) { // start with NO_GPS until we get first packet state.status = AP_GPS::GPS_Status::NO_GPS; } return false; } bool AP_GPS_DroneCAN::is_healthy(void) const { // if we don't have any health reports, assume it's healthy if (!seen_status) { return true; } return healthy; } bool AP_GPS_DroneCAN::logging_healthy(void) const { // if we don't have status, assume it's valid if (!seen_status) { return true; } return (status_flags & ARDUPILOT_GNSS_STATUS_STATUS_LOGGING) != 0; } bool AP_GPS_DroneCAN::is_configured(void) const { // if we don't have status assume it's configured if (!seen_status) { return true; } return (status_flags & ARDUPILOT_GNSS_STATUS_STATUS_ARMABLE) != 0; } /* handle RTCM data from MAVLink GPS_RTCM_DATA, forwarding it over MAVLink */ void AP_GPS_DroneCAN::inject_data(const uint8_t *data, uint16_t len) { // we only handle this if we are the first DroneCAN GPS or we are // using a different uavcan instance than the first GPS, as we // send the data as broadcast on all DroneCAN devive ports and we // don't want to send duplicates if (_detected_module == 0 || _detected_modules[_detected_module].ap_dronecan != _detected_modules[0].ap_dronecan) { _detected_modules[_detected_module].ap_dronecan->send_RTCMStream(data, len); } } /* handle param get/set response */ bool AP_GPS_DroneCAN::handle_param_get_set_response_int(AP_DroneCAN* ap_dronecan, uint8_t node_id, const char* name, int32_t &value) { Debug("AP_GPS_DroneCAN: param set/get response from %d %s %ld\n", node_id, name, value); if (strcmp(name, "GPS_TYPE") == 0 && cfg_step == STEP_SET_TYPE) { if (role == AP_GPS::GPS_ROLE_MB_BASE && value != AP_GPS::GPS_TYPE_UBLOX_RTK_BASE) { value = (int32_t)AP_GPS::GPS_TYPE_UBLOX_RTK_BASE; requires_save_and_reboot = true; return true; } else if (role == AP_GPS::GPS_ROLE_MB_ROVER && value != AP_GPS::GPS_TYPE_UBLOX_RTK_ROVER) { value = (int32_t)AP_GPS::GPS_TYPE_UBLOX_RTK_ROVER; requires_save_and_reboot = true; return true; } else { cfg_step++; } } if (strcmp(name, "GPS_MB_ONLY_PORT") == 0 && cfg_step == STEP_SET_MB_CAN_TX) { if (option_set(AP_GPS::UAVCAN_MBUseDedicatedBus) && !value) { // set up so that another CAN port is used for the Moving Baseline Data // setting this value will allow another CAN port to be used as dedicated // line for the Moving Baseline Data value = 1; requires_save_and_reboot = true; return true; } else if (!option_set(AP_GPS::UAVCAN_MBUseDedicatedBus) && value) { // set up so that all CAN ports are used for the Moving Baseline Data value = 0; requires_save_and_reboot = true; return true; } else { cfg_step++; } } return false; } bool AP_GPS_DroneCAN::handle_param_get_set_response_float(AP_DroneCAN* ap_dronecan, uint8_t node_id, const char* name, float &value) { Debug("AP_GPS_DroneCAN: param set/get response from %d %s %f\n", node_id, name, value); return false; } void AP_GPS_DroneCAN::handle_param_save_response(AP_DroneCAN* ap_dronecan, const uint8_t node_id, bool success) { Debug("AP_GPS_DroneCAN: param save response from %d %s\n", node_id, success ? "success" : "failure"); if (cfg_step != STEP_SAVE_AND_REBOOT) { return; } if (success) { cfg_step++; } // Also send reboot command // this is ok as we are sending from DroneCAN thread context Debug("AP_GPS_DroneCAN: sending reboot command %d\n", node_id); ap_dronecan->send_reboot_request(node_id); } #if AP_DRONECAN_SEND_GPS bool AP_GPS_DroneCAN::instance_exists(const AP_DroneCAN* ap_dronecan) { for (uint8_t i=0; i