/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Proximity_Backend.h" #if HAL_PROXIMITY_ENABLED #include #include #include /* base class constructor. This incorporates initialisation as well. */ AP_Proximity_Backend::AP_Proximity_Backend(AP_Proximity& _frontend, AP_Proximity::Proximity_State& _state, AP_Proximity_Params& _params) : frontend(_frontend), state(_state), params(_params) { _backend_type = (AP_Proximity::Type )_params.type.get(); } static_assert(PROXIMITY_MAX_DIRECTION <= 8, "get_horizontal_distances assumes 8-bits is enough for validity bitmask"); // set status and update valid count void AP_Proximity_Backend::set_status(AP_Proximity::Status status) { state.status = status; } // correct an angle (in degrees) based on the orientation and yaw correction parameters float AP_Proximity_Backend::correct_angle_for_orientation(float angle_degrees) const { const float angle_sign = (params.orientation == 1) ? -1.0f : 1.0f; return wrap_360(angle_degrees * angle_sign + params.yaw_correction); } // check if a reading should be ignored because it falls into an ignore area (check_for_ign_area should be sent as false if this check is not needed) // pitch is the vertical body-frame angle (in degrees) to the obstacle (0=directly ahead, 90 is above the vehicle) // yaw is the horizontal body-frame angle (in degrees) to the obstacle (0=directly ahead of the vehicle, 90 is to the right of the vehicle) // Also checks if obstacle is near land or out of range // angles should be in degrees and in the range of 0 to 360, distance should be in meteres bool AP_Proximity_Backend::ignore_reading(float pitch, float yaw, float distance_m, bool check_for_ign_area) const { // check if distances are supposed to be in a particular range if (!is_zero(params.max_m)) { if (distance_m > params.max_m) { // too far away return true; } } if (!is_zero(params.min_m)) { if (distance_m < params.min_m) { // too close return true; } } if (check_for_ign_area) { // check angle vs each ignore area for (uint8_t i=0; i < PROXIMITY_MAX_IGNORE; i++) { if (params.ignore_width_deg[i] != 0) { if (abs(yaw - params.ignore_angle_deg[i]) <= (params.ignore_width_deg[i]/2)) { return true; } } } } // check if obstacle is near land return frontend.check_obstacle_near_ground(pitch, yaw, distance_m); } // returns true if database is ready to be pushed to and all cached data is ready bool AP_Proximity_Backend::database_prepare_for_push(Vector3f ¤t_pos, Matrix3f &body_to_ned) { #if AP_OADATABASE_ENABLED AP_OADatabase *oaDb = AP::oadatabase(); if (oaDb == nullptr || !oaDb->healthy()) { return false; } if (!AP::ahrs().get_relative_position_NED_origin(current_pos)) { return false; } body_to_ned = AP::ahrs().get_rotation_body_to_ned(); return true; #else return false; #endif } // update Object Avoidance database with Earth-frame point void AP_Proximity_Backend::database_push(float angle, float pitch, float distance) { Vector3f current_pos; Matrix3f body_to_ned; if (database_prepare_for_push(current_pos, body_to_ned)) { database_push(angle, pitch, distance, AP_HAL::millis(), current_pos, body_to_ned); } } // update Object Avoidance database with Earth-frame point // pitch can be optionally provided if needed void AP_Proximity_Backend::database_push(float angle, float pitch, float distance, uint32_t timestamp_ms, const Vector3f ¤t_pos, const Matrix3f &body_to_ned) { #if AP_OADATABASE_ENABLED AP_OADatabase *oaDb = AP::oadatabase(); if (oaDb == nullptr || !oaDb->healthy()) { return; } if ((pitch > 90.0f) || (pitch < -90.0f)) { // sanity check on pitch return; } //Assume object is angle and pitch bearing and distance meters away from the vehicle Vector3f object_3D; object_3D.offset_bearing(wrap_180(angle), (pitch * -1.0f), distance); const Vector3f rotated_object_3D = body_to_ned * object_3D; //Calculate the position vector from origin Vector3f temp_pos = current_pos + rotated_object_3D; //Convert the vector to a NEU frame from NED temp_pos.z = temp_pos.z * -1.0f; oaDb->queue_push(temp_pos, timestamp_ms, distance); #endif // AP_OADATABASE_ENABLED } #endif // HAL_PROXIMITY_ENABLED