/* * matrix3.cpp * Copyright (C) Siddharth Bharat Purohit, 3DRobotics Inc. 2015 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include "AP_Math.h" #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif /* * Does matrix multiplication of two regular/square matrices * * @param A, Matrix A * @param B, Matrix B * @param n, dimemsion of square matrices * @returns multiplied matrix i.e. A*B */ template static T* matrix_multiply(const T *A, const T *B, uint16_t n) { T* ret = NEW_NOTHROW T[n*n]; memset(ret,0.0f,n*n*sizeof(T)); for(uint16_t i = 0; i < n; i++) { for(uint16_t j = 0; j < n; j++) { for(uint16_t k = 0;k < n; k++) { ret[i*n + j] += A[i*n + k] * B[k*n + j]; } } } return ret; } template static inline void swap(T &a, T &b) { T c; c = a; a = b; b = c; } /* * calculates pivot matrix such that all the larger elements in the row are on diagonal * * @param A, input matrix matrix * @param pivot * @param n, dimenstion of square matrix * @returns false = matrix is Singular or non positive definite, true = matrix inversion successful */ template static void mat_pivot(const T* A, T* pivot, uint16_t n) { for(uint16_t i = 0;i(i==j); } } for(uint16_t i = 0;i < n; i++) { uint16_t max_j = i; for(uint16_t j=i;j::value) { if(fabsF(A[j*n + i]) > fabsF(A[max_j*n + i])) { max_j = j; } } else { if(fabsF(A[j*n + i]) > fabsF(A[max_j*n + i])) { max_j = j; } } } if(max_j != i) { for(uint16_t k = 0; k < n; k++) { swap(pivot[i*n + k], pivot[max_j*n + k]); } } } } /* * calculates matrix inverse of Lower trangular matrix using forward substitution * * @param L, lower triangular matrix * @param out, Output inverted lower triangular matrix * @param n, dimension of matrix */ template static void mat_forward_sub(const T *L, T *out, uint16_t n) { // Forward substitution solve LY = I for(int i = 0; i < n; i++) { out[i*n + i] = 1/L[i*n + i]; for (int j = i+1; j < n; j++) { for (int k = i; k < j; k++) { out[j*n + i] -= L[j*n + k] * out[k*n + i]; } out[j*n + i] /= L[j*n + j]; } } } /* * calculates matrix inverse of Upper trangular matrix using backward substitution * * @param U, upper triangular matrix * @param out, Output inverted upper triangular matrix * @param n, dimension of matrix */ template static void mat_back_sub(const T *U, T *out, uint16_t n) { // Backward Substitution solve UY = I for(int i = n-1; i >= 0; i--) { out[i*n + i] = 1/U[i*n + i]; for (int j = i - 1; j >= 0; j--) { for (int k = i; k > j; k--) { out[j*n + i] -= U[j*n + k] * out[k*n + i]; } out[j*n + i] /= U[j*n + j]; } } } /* * Decomposes square matrix into Lower and Upper triangular matrices such that * A*P = L*U, where P is the pivot matrix * ref: http://rosettacode.org/wiki/LU_decomposition * @param U, upper triangular matrix * @param out, Output inverted upper triangular matrix * @param n, dimension of matrix */ template static void mat_LU_decompose(const T* A, T* L, T* U, T *P, uint16_t n) { memset(L,0,n*n*sizeof(T)); memset(U,0,n*n*sizeof(T)); memset(P,0,n*n*sizeof(T)); mat_pivot(A,P,n); T *APrime = matrix_multiply(P,A,n); for(uint16_t i = 0; i < n; i++) { L[i*n + i] = 1; } for(uint16_t i = 0; i < n; i++) { for(uint16_t j = 0; j < n; j++) { if(j <= i) { U[j*n + i] = APrime[j*n + i]; for(uint16_t k = 0; k < j; k++) { U[j*n + i] -= L[j*n + k] * U[k*n + i]; } } if(j >= i) { L[j*n + i] = APrime[j*n + i]; for(uint16_t k = 0; k < i; k++) { L[j*n + i] -= L[j*n + k] * U[k*n + i]; } L[j*n + i] /= U[i*n + i]; } } } delete[] APrime; } /* * matrix inverse code for any square matrix using LU decomposition * inv = inv(U)*inv(L)*P, where L and U are triagular matrices and P the pivot matrix * ref: http://www.cl.cam.ac.uk/teaching/1314/NumMethods/supporting/mcmaster-kiruba-ludecomp.pdf * @param m, input 4x4 matrix * @param inv, Output inverted 4x4 matrix * @param n, dimension of square matrix * @returns false = matrix is Singular, true = matrix inversion successful */ template static bool mat_inverseN(const T* A, T* inv, uint16_t n) { T *L, *U, *P; bool ret = true; L = NEW_NOTHROW T[n*n]; U = NEW_NOTHROW T[n*n]; P = NEW_NOTHROW T[n*n]; mat_LU_decompose(A,L,U,P,n); T *L_inv = NEW_NOTHROW T[n*n]; T *U_inv = NEW_NOTHROW T[n*n]; memset(L_inv,0,n*n*sizeof(T)); mat_forward_sub(L,L_inv,n); memset(U_inv,0,n*n*sizeof(T)); mat_back_sub(U,U_inv,n); // decomposed matrices no longer required delete[] L; delete[] U; T *inv_unpivoted = matrix_multiply(U_inv,L_inv,n); T *inv_pivoted = matrix_multiply(inv_unpivoted, P, n); //check sanity of results for(uint16_t i = 0; i < n; i++) { for(uint16_t j = 0; j < n; j++) { if(isnan(inv_pivoted[i*n+j]) || isinf(inv_pivoted[i*n+j])){ ret = false; } } } memcpy(inv,inv_pivoted,n*n*sizeof(T)); //free memory delete[] inv_pivoted; delete[] inv_unpivoted; delete[] P; delete[] U_inv; delete[] L_inv; return ret; } /* * fast matrix inverse code only for 3x3 square matrix * * @param m, input 4x4 matrix * @param invOut, Output inverted 4x4 matrix * @returns false = matrix is Singular, true = matrix inversion successful */ template static bool inverse3x3(const T m[], T invOut[]) { T inv[9]; // computes the inverse of a matrix m T det = m[0] * (m[4] * m[8] - m[7] * m[5]) - m[1] * (m[3] * m[8] - m[5] * m[6]) + m[2] * (m[3] * m[7] - m[4] * m[6]); if (is_zero(det) || isinf(det)) { return false; } T invdet = 1 / det; inv[0] = (m[4] * m[8] - m[7] * m[5]) * invdet; inv[1] = (m[2] * m[7] - m[1] * m[8]) * invdet; inv[2] = (m[1] * m[5] - m[2] * m[4]) * invdet; inv[3] = (m[5] * m[6] - m[3] * m[8]) * invdet; inv[4] = (m[0] * m[8] - m[2] * m[6]) * invdet; inv[5] = (m[3] * m[2] - m[0] * m[5]) * invdet; inv[6] = (m[3] * m[7] - m[6] * m[4]) * invdet; inv[7] = (m[6] * m[1] - m[0] * m[7]) * invdet; inv[8] = (m[0] * m[4] - m[3] * m[1]) * invdet; for(uint16_t i = 0; i < 9; i++){ invOut[i] = inv[i]; } return true; } /* * fast matrix inverse code only for 4x4 square matrix copied from * gluInvertMatrix implementation in opengl for 4x4 matrices. * * @param m, input 4x4 matrix * @param invOut, Output inverted 4x4 matrix * @returns false = matrix is Singular, true = matrix inversion successful */ template static bool inverse4x4(const T m[],T invOut[]) { T inv[16], det; uint16_t i; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL //disable FE_INEXACT detection as it fails on mac os runs int old = fedisableexcept(FE_INEXACT | FE_OVERFLOW); if (old < 0) { // hal.console->printf("inverse4x4(): warning: error on disabling FE_OVERFLOW floating point exception\n"); } #endif inv[0] = m[5] * m[10] * m[15] - m[5] * m[11] * m[14] - m[9] * m[6] * m[15] + m[9] * m[7] * m[14] + m[13] * m[6] * m[11] - m[13] * m[7] * m[10]; inv[4] = -m[4] * m[10] * m[15] + m[4] * m[11] * m[14] + m[8] * m[6] * m[15] - m[8] * m[7] * m[14] - m[12] * m[6] * m[11] + m[12] * m[7] * m[10]; inv[8] = m[4] * m[9] * m[15] - m[4] * m[11] * m[13] - m[8] * m[5] * m[15] + m[8] * m[7] * m[13] + m[12] * m[5] * m[11] - m[12] * m[7] * m[9]; inv[12] = -m[4] * m[9] * m[14] + m[4] * m[10] * m[13] + m[8] * m[5] * m[14] - m[8] * m[6] * m[13] - m[12] * m[5] * m[10] + m[12] * m[6] * m[9]; inv[1] = -m[1] * m[10] * m[15] + m[1] * m[11] * m[14] + m[9] * m[2] * m[15] - m[9] * m[3] * m[14] - m[13] * m[2] * m[11] + m[13] * m[3] * m[10]; inv[5] = m[0] * m[10] * m[15] - m[0] * m[11] * m[14] - m[8] * m[2] * m[15] + m[8] * m[3] * m[14] + m[12] * m[2] * m[11] - m[12] * m[3] * m[10]; inv[9] = -m[0] * m[9] * m[15] + m[0] * m[11] * m[13] + m[8] * m[1] * m[15] - m[8] * m[3] * m[13] - m[12] * m[1] * m[11] + m[12] * m[3] * m[9]; inv[13] = m[0] * m[9] * m[14] - m[0] * m[10] * m[13] - m[8] * m[1] * m[14] + m[8] * m[2] * m[13] + m[12] * m[1] * m[10] - m[12] * m[2] * m[9]; inv[2] = m[1] * m[6] * m[15] - m[1] * m[7] * m[14] - m[5] * m[2] * m[15] + m[5] * m[3] * m[14] + m[13] * m[2] * m[7] - m[13] * m[3] * m[6]; inv[6] = -m[0] * m[6] * m[15] + m[0] * m[7] * m[14] + m[4] * m[2] * m[15] - m[4] * m[3] * m[14] - m[12] * m[2] * m[7] + m[12] * m[3] * m[6]; inv[10] = m[0] * m[5] * m[15] - m[0] * m[7] * m[13] - m[4] * m[1] * m[15] + m[4] * m[3] * m[13] + m[12] * m[1] * m[7] - m[12] * m[3] * m[5]; inv[14] = -m[0] * m[5] * m[14] + m[0] * m[6] * m[13] + m[4] * m[1] * m[14] - m[4] * m[2] * m[13] - m[12] * m[1] * m[6] + m[12] * m[2] * m[5]; inv[3] = -m[1] * m[6] * m[11] + m[1] * m[7] * m[10] + m[5] * m[2] * m[11] - m[5] * m[3] * m[10] - m[9] * m[2] * m[7] + m[9] * m[3] * m[6]; inv[7] = m[0] * m[6] * m[11] - m[0] * m[7] * m[10] - m[4] * m[2] * m[11] + m[4] * m[3] * m[10] + m[8] * m[2] * m[7] - m[8] * m[3] * m[6]; inv[11] = -m[0] * m[5] * m[11] + m[0] * m[7] * m[9] + m[4] * m[1] * m[11] - m[4] * m[3] * m[9] - m[8] * m[1] * m[7] + m[8] * m[3] * m[5]; inv[15] = m[0] * m[5] * m[10] - m[0] * m[6] * m[9] - m[4] * m[1] * m[10] + m[4] * m[2] * m[9] + m[8] * m[1] * m[6] - m[8] * m[2] * m[5]; det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12]; if (is_zero(det) || isinf(det)){ return false; } det = 1.0f / det; for (i = 0; i < 16; i++) invOut[i] = inv[i] * det; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (old >= 0 && feenableexcept(old) < 0) { // hal.console->printf("inverse4x4(): warning: error on restoring floating exception mask\n"); } #endif return true; } /* * generic matrix inverse code * * @param x, input nxn matrix * @param y, Output inverted nxn matrix * @param n, dimension of square matrix * @returns false = matrix is Singular, true = matrix inversion successful */ template bool mat_inverse(const T x[], T y[], uint16_t dim) { switch(dim){ case 3: return inverse3x3(x,y); case 4: return inverse4x4(x,y); default: return mat_inverseN(x,y,dim); } } template void mat_mul(const T *A, const T *B, T *C, uint16_t n) { memset(C, 0, sizeof(T)*n*n); for(uint16_t i = 0; i < n; i++) { for(uint16_t j = 0; j < n; j++) { for(uint16_t k = 0;k < n; k++) { C[i*n + j] += A[i*n + k] * B[k*n + j]; } } } } template void mat_identity(T *A, uint16_t n) { memset(A, 0, sizeof(T)*n*n); for (uint16_t i=0; i(const float x[], float y[], uint16_t dim); template void mat_mul(const float *A, const float *B, float *C, uint16_t n); template void mat_identity(float x[], uint16_t dim); template bool mat_inverse(const double x[], double y[], uint16_t dim); template void mat_mul(const double *A, const double *B, double *C, uint16_t n); template void mat_identity(double x[], uint16_t dim);