#include #if HAL_CPU_CLASS >= HAL_CPU_CLASS_150 #include "AP_NavEKF2.h" #include "AP_NavEKF2_core.h" #include #include #include extern const AP_HAL::HAL& hal; /******************************************************** * RESET FUNCTIONS * ********************************************************/ // Reset velocity states to last GPS measurement if available or to zero if in constant position mode or if PV aiding is not absolute // Do not reset vertical velocity using GPS as there is baro alt available to constrain drift void NavEKF2_core::ResetVelocity(void) { // Store the position before the reset so that we can record the reset delta velResetNE.x = stateStruct.velocity.x; velResetNE.y = stateStruct.velocity.y; // reset the corresponding covariances zeroRows(P,3,4); zeroCols(P,3,4); if (PV_AidingMode != AID_ABSOLUTE) { stateStruct.velocity.zero(); // set the variances using the measurement noise parameter P[4][4] = P[3][3] = sq(frontend->_gpsHorizVelNoise); } else { // reset horizontal velocity states to the GPS velocity if available if (imuSampleTime_ms - lastTimeGpsReceived_ms < 250) { stateStruct.velocity.x = gpsDataNew.vel.x; stateStruct.velocity.y = gpsDataNew.vel.y; // set the variances using the reported GPS speed accuracy P[4][4] = P[3][3] = sq(MAX(frontend->_gpsHorizVelNoise,gpsSpdAccuracy)); // clear the timeout flags and counters velTimeout = false; lastVelPassTime_ms = imuSampleTime_ms; } else { stateStruct.velocity.x = 0.0f; stateStruct.velocity.y = 0.0f; // set the variances using the likely speed range P[4][4] = P[3][3] = sq(25.0f); // clear the timeout flags and counters velTimeout = false; lastVelPassTime_ms = imuSampleTime_ms; } } for (uint8_t i=0; i_gpsHorizPosNoise); } else { // Use GPS data as first preference if fresh data is available if (imuSampleTime_ms - lastTimeGpsReceived_ms < 250) { // record the ID of the GPS for the data we are using for the reset last_gps_idx = gpsDataNew.sensor_idx; // write to state vector and compensate for offset between last GPS measurement and the EKF time horizon stateStruct.position.x = gpsDataNew.pos.x + 0.001f*gpsDataNew.vel.x*(float(imuDataDelayed.time_ms) - float(gpsDataNew.time_ms)); stateStruct.position.y = gpsDataNew.pos.y + 0.001f*gpsDataNew.vel.y*(float(imuDataDelayed.time_ms) - float(gpsDataNew.time_ms)); // set the variances using the position measurement noise parameter P[6][6] = P[7][7] = sq(MAX(gpsPosAccuracy,frontend->_gpsHorizPosNoise)); // clear the timeout flags and counters posTimeout = false; lastPosPassTime_ms = imuSampleTime_ms; } else if (imuSampleTime_ms - rngBcnLast3DmeasTime_ms < 250) { // use the range beacon data as a second preference stateStruct.position.x = receiverPos.x; stateStruct.position.y = receiverPos.y; // set the variances from the beacon alignment filter P[6][6] = receiverPosCov[0][0]; P[7][7] = receiverPosCov[1][1]; // clear the timeout flags and counters rngBcnTimeout = false; lastRngBcnPassTime_ms = imuSampleTime_ms; } } for (uint8_t i=0; i_fusionModeGPS == 0) { stateStruct.velocity.z = gpsDataNew.vel.z; } else if (onGround) { stateStruct.velocity.z = 0.0f; } for (uint8_t i=0; i_gpsVertVelNoise); } // Zero the EKF height datum // Return true if the height datum reset has been performed bool NavEKF2_core::resetHeightDatum(void) { if (activeHgtSource == HGT_SOURCE_RNG) { // by definition the height datum is at ground level so cannot perform the reset return false; } // record the old height estimate float oldHgt = -stateStruct.position.z; // reset the barometer so that it reads zero at the current height frontend->_baro.update_calibration(); // reset the height state stateStruct.position.z = 0.0f; // adjust the height of the EKF origin so that the origin plus baro height before and after the reset is the same if (validOrigin) { EKF_origin.alt += oldHgt*100; } // adjust the terrain state terrainState += oldHgt; return true; } /******************************************************** * FUSE MEASURED_DATA * ********************************************************/ // select fusion of velocity, position and height measurements void NavEKF2_core::SelectVelPosFusion() { // Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz // If so, don't fuse measurements on this time step to reduce frame over-runs // Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements if (magFusePerformed && dtIMUavg < 0.005f && !posVelFusionDelayed) { posVelFusionDelayed = true; return; } else { posVelFusionDelayed = false; } // read GPS data from the sensor and check for new data in the buffer readGpsData(); gpsDataToFuse = storedGPS.recall(gpsDataDelayed,imuDataDelayed.time_ms); // Determine if we need to fuse position and velocity data on this time step if (gpsDataToFuse && PV_AidingMode == AID_ABSOLUTE) { // correct GPS data for position offset of antenna phase centre relative to the IMU Vector3f posOffsetBody = _ahrs->get_gps().get_antenna_offset(gpsDataDelayed.sensor_idx) - accelPosOffset; if (!posOffsetBody.is_zero()) { if (fuseVelData) { // TODO use a filtered angular rate with a group delay that matches the GPS delay Vector3f angRate = imuDataDelayed.delAng * (1.0f/imuDataDelayed.delAngDT); Vector3f velOffsetBody = angRate % posOffsetBody; Vector3f velOffsetEarth = prevTnb.mul_transpose(velOffsetBody); gpsDataDelayed.vel -= velOffsetEarth; } Vector3f posOffsetEarth = prevTnb.mul_transpose(posOffsetBody); gpsDataDelayed.pos.x -= posOffsetEarth.x; gpsDataDelayed.pos.y -= posOffsetEarth.y; gpsDataDelayed.hgt += posOffsetEarth.z; } // Don't fuse velocity data if GPS doesn't support it if (frontend->_fusionModeGPS <= 1) { fuseVelData = true; } else { fuseVelData = false; } fusePosData = true; } else { fuseVelData = false; fusePosData = false; } // we have GPS data to fuse and a request to align the yaw using the GPS course if (gpsYawResetRequest) { realignYawGPS(); } // Select height data to be fused from the available baro, range finder and GPS sources selectHeightForFusion(); // if we are using GPS, check for a change in receiver and reset position and height if (gpsDataToFuse && PV_AidingMode == AID_ABSOLUTE && gpsDataDelayed.sensor_idx != last_gps_idx) { // record the ID of the GPS that we are using for the reset last_gps_idx = gpsDataDelayed.sensor_idx; // Store the position before the reset so that we can record the reset delta posResetNE.x = stateStruct.position.x; posResetNE.y = stateStruct.position.y; // Set the position states to the position from the new GPS stateStruct.position.x = gpsDataNew.pos.x; stateStruct.position.y = gpsDataNew.pos.y; // Calculate the position offset due to the reset posResetNE.x = stateStruct.position.x - posResetNE.x; posResetNE.y = stateStruct.position.y - posResetNE.y; // Add the offset to the output observer states for (uint8_t i=0; iperf_begin(_perf_FuseVelPosNED); // health is set bad until test passed velHealth = false; posHealth = false; hgtHealth = false; // declare variables used to check measurement errors Vector3f velInnov; // declare variables used to control access to arrays bool fuseData[6] = {false,false,false,false,false,false}; uint8_t stateIndex; uint8_t obsIndex; // declare variables used by state and covariance update calculations Vector6 R_OBS; // Measurement variances used for fusion Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only Vector6 observation; float SK; // perform sequential fusion of GPS measurements. This assumes that the // errors in the different velocity and position components are // uncorrelated which is not true, however in the absence of covariance // data from the GPS receiver it is the only assumption we can make // so we might as well take advantage of the computational efficiencies // associated with sequential fusion if (fuseVelData || fusePosData || fuseHgtData) { // form the observation vector observation[0] = gpsDataDelayed.vel.x; observation[1] = gpsDataDelayed.vel.y; observation[2] = gpsDataDelayed.vel.z; observation[3] = gpsDataDelayed.pos.x; observation[4] = gpsDataDelayed.pos.y; observation[5] = -hgtMea; // calculate additional error in GPS position caused by manoeuvring float posErr = frontend->gpsPosVarAccScale * accNavMag; // estimate the GPS Velocity, GPS horiz position and height measurement variances. // Use different errors if operating without external aiding using an assumed position or velocity of zero if (PV_AidingMode == AID_NONE) { if (tiltAlignComplete && motorsArmed) { // This is a compromise between corrections for gyro errors and reducing effect of manoeuvre accelerations on tilt estimate R_OBS[0] = sq(constrain_float(frontend->_noaidHorizNoise, 0.5f, 50.0f)); } else { // Use a smaller value to give faster initial alignment R_OBS[0] = sq(0.5f); } R_OBS[1] = R_OBS[0]; R_OBS[2] = R_OBS[0]; R_OBS[3] = R_OBS[0]; R_OBS[4] = R_OBS[0]; for (uint8_t i=0; i<=2; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i]; } else { if (gpsSpdAccuracy > 0.0f) { // use GPS receivers reported speed accuracy if available and floor at value set by GPS velocity noise parameter R_OBS[0] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsHorizVelNoise, 50.0f)); R_OBS[2] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsVertVelNoise, 50.0f)); } else { // calculate additional error in GPS velocity caused by manoeuvring R_OBS[0] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag); R_OBS[2] = sq(constrain_float(frontend->_gpsVertVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsDVelVarAccScale * accNavMag); } R_OBS[1] = R_OBS[0]; // Use GPS reported position accuracy if available and floor at value set by GPS position noise parameter if (gpsPosAccuracy > 0.0f) { R_OBS[3] = sq(constrain_float(gpsPosAccuracy, frontend->_gpsHorizPosNoise, 100.0f)); } else { R_OBS[3] = sq(constrain_float(frontend->_gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr); } R_OBS[4] = R_OBS[3]; // For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity // For horizontal GPs velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPs perfomrance // plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early for (uint8_t i=0; i<=2; i++) R_OBS_DATA_CHECKS[i] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag); } R_OBS[5] = posDownObsNoise; for (uint8_t i=3; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i]; // if vertical GPS velocity data and an independent height source is being used, check to see if the GPS vertical velocity and altimeter // innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting // the accelerometers and we should disable the GPS and barometer innovation consistency checks. if (useGpsVertVel && fuseVelData && (frontend->_altSource != 2)) { // calculate innovations for height and vertical GPS vel measurements float hgtErr = stateStruct.position.z - observation[5]; float velDErr = stateStruct.velocity.z - observation[2]; // check if they are the same sign and both more than 3-sigma out of bounds if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > 9.0f * (P[8][8] + R_OBS_DATA_CHECKS[5])) && (sq(velDErr) > 9.0f * (P[5][5] + R_OBS_DATA_CHECKS[2]))) { badIMUdata = true; } else { badIMUdata = false; } } // calculate innovations and check GPS data validity using an innovation consistency check // test position measurements if (fusePosData) { // test horizontal position measurements innovVelPos[3] = stateStruct.position.x - observation[3]; innovVelPos[4] = stateStruct.position.y - observation[4]; varInnovVelPos[3] = P[6][6] + R_OBS_DATA_CHECKS[3]; varInnovVelPos[4] = P[7][7] + R_OBS_DATA_CHECKS[4]; // apply an innovation consistency threshold test, but don't fail if bad IMU data float maxPosInnov2 = sq(MAX(0.01f * (float)frontend->_gpsPosInnovGate, 1.0f))*(varInnovVelPos[3] + varInnovVelPos[4]); posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2; posHealth = ((posTestRatio < 1.0f) || badIMUdata); // use position data if healthy or timed out if (PV_AidingMode == AID_NONE) { posHealth = true; lastPosPassTime_ms = imuSampleTime_ms; } else if (posHealth || posTimeout) { posHealth = true; lastPosPassTime_ms = imuSampleTime_ms; // if timed out or outside the specified uncertainty radius, reset to the GPS if (posTimeout || ((P[6][6] + P[7][7]) > sq(float(frontend->_gpsGlitchRadiusMax)))) { // reset the position to the current GPS position ResetPosition(); // reset the velocity to the GPS velocity ResetVelocity(); // don't fuse GPS data on this time step fusePosData = false; fuseVelData = false; // Reset the position variances and corresponding covariances to a value that will pass the checks zeroRows(P,6,7); zeroCols(P,6,7); P[6][6] = sq(float(0.5f*frontend->_gpsGlitchRadiusMax)); P[7][7] = P[6][6]; // Reset the normalised innovation to avoid failing the bad fusion tests posTestRatio = 0.0f; velTestRatio = 0.0f; } } else { posHealth = false; } } // test velocity measurements if (fuseVelData) { // test velocity measurements uint8_t imax = 2; // Don't fuse vertical velocity observations if inhibited by the user or if we are using synthetic data if (frontend->_fusionModeGPS >= 1 || PV_AidingMode != AID_ABSOLUTE) { imax = 1; } float innovVelSumSq = 0; // sum of squares of velocity innovations float varVelSum = 0; // sum of velocity innovation variances for (uint8_t i = 0; i<=imax; i++) { // velocity states start at index 3 stateIndex = i + 3; // calculate innovations using blended and single IMU predicted states velInnov[i] = stateStruct.velocity[i] - observation[i]; // blended // calculate innovation variance varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i]; // sum the innovation and innovation variances innovVelSumSq += sq(velInnov[i]); varVelSum += varInnovVelPos[i]; } // apply an innovation consistency threshold test, but don't fail if bad IMU data // calculate the test ratio velTestRatio = innovVelSumSq / (varVelSum * sq(MAX(0.01f * (float)frontend->_gpsVelInnovGate, 1.0f))); // fail if the ratio is greater than 1 velHealth = ((velTestRatio < 1.0f) || badIMUdata); // use velocity data if healthy, timed out, or in constant position mode if (velHealth || velTimeout) { velHealth = true; // restart the timeout count lastVelPassTime_ms = imuSampleTime_ms; // If we are doing full aiding and velocity fusion times out, reset to the GPS velocity if (PV_AidingMode == AID_ABSOLUTE && velTimeout) { // reset the velocity to the GPS velocity ResetVelocity(); // don't fuse GPS velocity data on this time step fuseVelData = false; // Reset the normalised innovation to avoid failing the bad fusion tests velTestRatio = 0.0f; } } else { velHealth = false; } } // test height measurements if (fuseHgtData) { // calculate height innovations innovVelPos[5] = stateStruct.position.z - observation[5]; varInnovVelPos[5] = P[8][8] + R_OBS_DATA_CHECKS[5]; // calculate the innovation consistency test ratio hgtTestRatio = sq(innovVelPos[5]) / (sq(MAX(0.01f * (float)frontend->_hgtInnovGate, 1.0f)) * varInnovVelPos[5]); // fail if the ratio is > 1, but don't fail if bad IMU data hgtHealth = ((hgtTestRatio < 1.0f) || badIMUdata); // Fuse height data if healthy or timed out or in constant position mode if (hgtHealth || hgtTimeout || (PV_AidingMode == AID_NONE && onGround)) { // Calculate a filtered value to be used by pre-flight health checks // We need to filter because wind gusts can generate significant baro noise and we want to be able to detect bias errors in the inertial solution if (onGround) { float dtBaro = (imuSampleTime_ms - lastHgtPassTime_ms)*1.0e-3f; const float hgtInnovFiltTC = 2.0f; float alpha = constrain_float(dtBaro/(dtBaro+hgtInnovFiltTC),0.0f,1.0f); hgtInnovFiltState += (innovVelPos[5]-hgtInnovFiltState)*alpha; } else { hgtInnovFiltState = 0.0f; } // if timed out, reset the height if (hgtTimeout) { ResetHeight(); } // If we have got this far then declare the height data as healthy and reset the timeout counter hgtHealth = true; lastHgtPassTime_ms = imuSampleTime_ms; } } // set range for sequential fusion of velocity and position measurements depending on which data is available and its health if (fuseVelData && velHealth) { fuseData[0] = true; fuseData[1] = true; if (useGpsVertVel) { fuseData[2] = true; } tiltErrVec.zero(); } if (fusePosData && posHealth) { fuseData[3] = true; fuseData[4] = true; tiltErrVec.zero(); } if (fuseHgtData && hgtHealth) { fuseData[5] = true; } // fuse measurements sequentially for (obsIndex=0; obsIndex<=5; obsIndex++) { if (fuseData[obsIndex]) { stateIndex = 3 + obsIndex; // calculate the measurement innovation, using states from a different time coordinate if fusing height data // adjust scaling on GPS measurement noise variances if not enough satellites if (obsIndex <= 2) { innovVelPos[obsIndex] = stateStruct.velocity[obsIndex] - observation[obsIndex]; R_OBS[obsIndex] *= sq(gpsNoiseScaler); } else if (obsIndex == 3 || obsIndex == 4) { innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex]; R_OBS[obsIndex] *= sq(gpsNoiseScaler); } else if (obsIndex == 5) { innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex]; const float gndMaxBaroErr = 4.0f; const float gndBaroInnovFloor = -0.5f; if(getTouchdownExpected() && activeHgtSource == HGT_SOURCE_BARO) { // when a touchdown is expected, floor the barometer innovation at gndBaroInnovFloor // constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr // this function looks like this: // |/ //---------|--------- // ____/| // / | // / | innovVelPos[5] += constrain_float(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr); } } // calculate the Kalman gain and calculate innovation variances varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex]; SK = 1.0f/varInnovVelPos[obsIndex]; for (uint8_t i= 0; i<=15; i++) { Kfusion[i] = P[i][stateIndex]*SK; } // inhibit magnetic field state estimation by setting Kalman gains to zero if (!inhibitMagStates) { for (uint8_t i = 16; i<=21; i++) { Kfusion[i] = P[i][stateIndex]*SK; } } else { for (uint8_t i = 16; i<=21; i++) { Kfusion[i] = 0.0f; } } // inhibit wind state estimation by setting Kalman gains to zero if (!inhibitWindStates) { Kfusion[22] = P[22][stateIndex]*SK; Kfusion[23] = P[23][stateIndex]*SK; } else { Kfusion[22] = 0.0f; Kfusion[23] = 0.0f; } // update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations // this is a numerically optimised implementation of standard equation P = (I - K*H)*P; for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { KHP[i][j] = Kfusion[i] * P[stateIndex][j]; } } // Check that we are not going to drive any variances negative and skip the update if so bool healthyFusion = true; for (uint8_t i= 0; i<=stateIndexLim; i++) { if (KHP[i][i] > P[i][i]) { healthyFusion = false; } } if (healthyFusion) { // update the covariance matrix for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { P[i][j] = P[i][j] - KHP[i][j]; } } // force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning. ForceSymmetry(); ConstrainVariances(); // update the states // zero the attitude error state - by definition it is assumed to be zero before each observaton fusion stateStruct.angErr.zero(); // calculate state corrections and re-normalise the quaternions for states predicted using the blended IMU data for (uint8_t i = 0; i<=stateIndexLim; i++) { statesArray[i] = statesArray[i] - Kfusion[i] * innovVelPos[obsIndex]; } // the first 3 states represent the angular misalignment vector. This is // is used to correct the estimated quaternion stateStruct.quat.rotate(stateStruct.angErr); // sum the attitude error from velocity and position fusion only // used as a metric for convergence monitoring if (obsIndex != 5) { tiltErrVec += stateStruct.angErr; } // record good fusion status if (obsIndex == 0) { faultStatus.bad_nvel = false; } else if (obsIndex == 1) { faultStatus.bad_evel = false; } else if (obsIndex == 2) { faultStatus.bad_dvel = false; } else if (obsIndex == 3) { faultStatus.bad_npos = false; } else if (obsIndex == 4) { faultStatus.bad_epos = false; } else if (obsIndex == 5) { faultStatus.bad_dpos = false; } } else { // record bad fusion status if (obsIndex == 0) { faultStatus.bad_nvel = true; } else if (obsIndex == 1) { faultStatus.bad_evel = true; } else if (obsIndex == 2) { faultStatus.bad_dvel = true; } else if (obsIndex == 3) { faultStatus.bad_npos = true; } else if (obsIndex == 4) { faultStatus.bad_epos = true; } else if (obsIndex == 5) { faultStatus.bad_dpos = true; } } } } } // stop performance timer hal.util->perf_end(_perf_FuseVelPosNED); } /******************************************************** * MISC FUNCTIONS * ********************************************************/ // select the height measurement to be fused from the available baro, range finder and GPS sources void NavEKF2_core::selectHeightForFusion() { // Read range finder data and check for new data in the buffer // This data is used by both height and optical flow fusion processing readRangeFinder(); rangeDataToFuse = storedRange.recall(rangeDataDelayed,imuDataDelayed.time_ms); // correct range data for the body frame position offset relative to the IMU // the corrected reading is the reading that would have been taken if the sensor was // co-located with the IMU if (rangeDataToFuse) { Vector3f posOffsetBody = frontend->_rng.get_pos_offset(rangeDataDelayed.sensor_idx) - accelPosOffset; if (!posOffsetBody.is_zero()) { Vector3f posOffsetEarth = prevTnb.mul_transpose(posOffsetBody); rangeDataDelayed.rng += posOffsetEarth.z / prevTnb.c.z; } } // read baro height data from the sensor and check for new data in the buffer readBaroData(); baroDataToFuse = storedBaro.recall(baroDataDelayed, imuDataDelayed.time_ms); // select height source if (((frontend->_useRngSwHgt > 0) || (frontend->_altSource == 1)) && (imuSampleTime_ms - rngValidMeaTime_ms < 500)) { if (frontend->_altSource == 1) { // always use range finder activeHgtSource = HGT_SOURCE_RNG; } else { // determine if we are above or below the height switch region float rangeMaxUse = 1e-4f * (float)frontend->_rng.max_distance_cm_orient(ROTATION_PITCH_270) * (float)frontend->_useRngSwHgt; bool aboveUpperSwHgt = (terrainState - stateStruct.position.z) > rangeMaxUse; bool belowLowerSwHgt = (terrainState - stateStruct.position.z) < 0.7f * rangeMaxUse; // If the terrain height is consistent and we are moving slowly, then it can be // used as a height reference in combination with a range finder // apply a hysteresis to the speed check to prevent rapid switching float horizSpeed = norm(stateStruct.velocity.x, stateStruct.velocity.y); bool dontTrustTerrain = ((horizSpeed > frontend->_useRngSwSpd) && filterStatus.flags.horiz_vel) || !terrainHgtStable; float trust_spd_trigger = MAX((frontend->_useRngSwSpd - 1.0f),(frontend->_useRngSwSpd * 0.5f)); bool trustTerrain = (horizSpeed < trust_spd_trigger) && terrainHgtStable; /* * Switch between range finder and primary height source using height above ground and speed thresholds with * hysteresis to avoid rapid switching. Using range finder for height requires a consistent terrain height * which cannot be assumed if the vehicle is moving horizontally. */ if ((aboveUpperSwHgt || dontTrustTerrain) && (activeHgtSource == HGT_SOURCE_RNG)) { // cannot trust terrain or range finder so stop using range finder height if (frontend->_altSource == 0) { activeHgtSource = HGT_SOURCE_BARO; } else if (frontend->_altSource == 2) { activeHgtSource = HGT_SOURCE_GPS; } } else if (belowLowerSwHgt && trustTerrain && (activeHgtSource != HGT_SOURCE_RNG)) { // reliable terrain and range finder so start using range finder height activeHgtSource = HGT_SOURCE_RNG; } } } else if ((frontend->_altSource == 2) && ((imuSampleTime_ms - lastTimeGpsReceived_ms) < 500) && validOrigin && gpsAccuracyGood) { activeHgtSource = HGT_SOURCE_GPS; } else if ((frontend->_altSource == 3) && validOrigin && rngBcnGoodToAlign) { activeHgtSource = HGT_SOURCE_BCN; } else { activeHgtSource = HGT_SOURCE_BARO; } // Use Baro alt as a fallback if we lose range finder or GPS bool lostRngHgt = ((activeHgtSource == HGT_SOURCE_RNG) && ((imuSampleTime_ms - rngValidMeaTime_ms) > 500)); bool lostGpsHgt = ((activeHgtSource == HGT_SOURCE_GPS) && ((imuSampleTime_ms - lastTimeGpsReceived_ms) > 2000)); if (lostRngHgt || lostGpsHgt) { activeHgtSource = HGT_SOURCE_BARO; } // if there is new baro data to fuse, calculate filtered baro data required by other processes if (baroDataToFuse) { // calculate offset to baro data that enables us to switch to Baro height use during operation if (activeHgtSource != HGT_SOURCE_BARO) { calcFiltBaroOffset(); } // filtered baro data used to provide a reference for takeoff // it is is reset to last height measurement on disarming in performArmingChecks() if (!getTakeoffExpected()) { const float gndHgtFiltTC = 0.5f; const float dtBaro = frontend->hgtAvg_ms*1.0e-3f; float alpha = constrain_float(dtBaro / (dtBaro+gndHgtFiltTC),0.0f,1.0f); meaHgtAtTakeOff += (baroDataDelayed.hgt-meaHgtAtTakeOff)*alpha; } } // calculate offset to GPS height data that enables us to switch to GPS height during operation if (gpsDataToFuse && (activeHgtSource != HGT_SOURCE_GPS)) { calcFiltGpsHgtOffset(); } // Select the height measurement source if (rangeDataToFuse && (activeHgtSource == HGT_SOURCE_RNG)) { // using range finder data // correct for tilt using a flat earth model if (prevTnb.c.z >= 0.7) { // calculate height above ground hgtMea = MAX(rangeDataDelayed.rng * prevTnb.c.z, rngOnGnd); // correct for terrain position relative to datum hgtMea -= terrainState; // enable fusion fuseHgtData = true; // set the observation noise posDownObsNoise = sq(constrain_float(frontend->_rngNoise, 0.1f, 10.0f)); // add uncertainty created by terrain gradient and vehicle tilt posDownObsNoise += sq(rangeDataDelayed.rng * frontend->_terrGradMax) * MAX(0.0f , (1.0f - sq(prevTnb.c.z))); } else { // disable fusion if tilted too far fuseHgtData = false; } } else if (gpsDataToFuse && (activeHgtSource == HGT_SOURCE_GPS)) { // using GPS data hgtMea = gpsDataDelayed.hgt; // enable fusion fuseHgtData = true; // set the observation noise using receiver reported accuracy or the horizontal noise scaled for typical VDOP/HDOP ratio if (gpsHgtAccuracy > 0.0f) { posDownObsNoise = sq(constrain_float(gpsHgtAccuracy, 1.5f * frontend->_gpsHorizPosNoise, 100.0f)); } else { posDownObsNoise = sq(constrain_float(1.5f * frontend->_gpsHorizPosNoise, 0.1f, 10.0f)); } } else if (baroDataToFuse && (activeHgtSource == HGT_SOURCE_BARO)) { // using Baro data hgtMea = baroDataDelayed.hgt - baroHgtOffset; // enable fusion fuseHgtData = true; // set the observation noise posDownObsNoise = sq(constrain_float(frontend->_baroAltNoise, 0.1f, 10.0f)); // reduce weighting (increase observation noise) on baro if we are likely to be in ground effect if (getTakeoffExpected() || getTouchdownExpected()) { posDownObsNoise *= frontend->gndEffectBaroScaler; } // If we are in takeoff mode, the height measurement is limited to be no less than the measurement at start of takeoff // This prevents negative baro disturbances due to copter downwash corrupting the EKF altitude during initial ascent if (motorsArmed && getTakeoffExpected()) { hgtMea = MAX(hgtMea, meaHgtAtTakeOff); } } else { fuseHgtData = false; } // If we haven't fused height data for a while, then declare the height data as being timed out // set timeout period based on whether we have vertical GPS velocity available to constrain drift hgtRetryTime_ms = (useGpsVertVel && !velTimeout) ? frontend->hgtRetryTimeMode0_ms : frontend->hgtRetryTimeMode12_ms; if (imuSampleTime_ms - lastHgtPassTime_ms > hgtRetryTime_ms) { hgtTimeout = true; } else { hgtTimeout = false; } } #endif // HAL_CPU_CLASS