/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* ROV/AUV/Submarine simulator class */ #pragma once #include "SIM_Aircraft.h" #include "SIM_Motor.h" #include "SIM_Frame.h" namespace SITL { /* a submarine simulator */ class Thruster { public: Thruster(int8_t _servo, float roll_fac, float pitch_fac, float yaw_fac, float throttle_fac, float forward_fac, float lat_fac) : servo(_servo) { linear = Vector3f(forward_fac, lat_fac, -throttle_fac); rotational = Vector3f(roll_fac, pitch_fac, yaw_fac); }; int8_t servo; Vector3f linear; Vector3f rotational; }; class Submarine : public Aircraft { public: Submarine(const char *frame_str); /* update model by one time step */ void update(const struct sitl_input &input) override; /* static object creator */ static Aircraft *create(const char *frame_str) { return new Submarine(frame_str); } protected: const float water_density = 1023.6; // (kg/m^3) At a temperature of 25 °C, salinity of 35 g/kg and 1 atm pressure const struct { float length = 0.457; // x direction (meters) float width = 0.338; // y direction (meters) float height = 0.254; // z direction (meters) float weight = 10.5; // (kg) float net_buoyancy = 2.0; // (N) float buoyancy_acceleration = GRAVITY_MSS + net_buoyancy/weight; // Frame drag coefficient const Vector3f linear_drag_coefficient = Vector3f(0.2, 0.3, 0.4); const Vector3f angular_drag_coefficient = Vector3f(1, 1, 1); // Calculate total volume from water buoyancy // $ V = F_b / (rho * g) $ // V = volume (m^3), rho = water density (kg/m^3), g = gravity (m/s^2), F_b = force (N) float volume = buoyancy_acceleration * weight / (GRAVITY_MSS * 1023.6f); // Calculate equivalent sphere area for drag force // $ A = pi * r^2 / 4 $ // $ V = 4 * pi * r^3 / 3 $ // $ r ^2 = (V * 3 / 4) ^ (2/3) $ // A = area (m^3), r = sphere radius (m) float equivalent_sphere_area = M_PI_4 * pow(volume * 3.0f / 4.0f, 2.0f / 3.0f); } frame_property; bool on_ground() const override; // calculate rotational and linear accelerations void calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel); // calculate buoyancy float calculate_buoyancy_acceleration(); // calculate drag from velocity and drag coefficient void calculate_drag_force(const Vector3f &velocity, const Vector3f &drag_coefficient, Vector3f &force); Frame *frame; Thruster* thrusters; uint8_t n_thrusters; }; }