/* Variometer class by Samuel Tabor Manages the estimation of aircraft total energy, drag and vertical air velocity. */ #include "Variometer.h" #include Variometer::Variometer(AP_AHRS &ahrs, const AP_Vehicle::FixedWing &parms) : _ahrs(ahrs), _aparm(parms) { _climb_filter = LowPassFilter(1.0/60.0); _vdot_filter2 = LowPassFilter(1.0f/60.0f); } void Variometer::update(const float polar_K, const float polar_Cd0, const float polar_B) { _ahrs.get_relative_position_D_home(alt); alt = -alt; float aspd = 0; if (!_ahrs.airspeed_estimate(aspd)) { aspd = _aparm.airspeed_cruise_cm / 100.0f; } _aspd_filt = _sp_filter.apply(aspd); // Constrained airspeed. const float minV = sqrtf(polar_K/1.5); _aspd_filt_constrained = _aspd_filt>minV ? _aspd_filt : minV; tau = calculate_circling_time_constant(); float dt = (float)(AP_HAL::micros64() - _prev_update_time)/1e6; // Logic borrowed from AP_TECS.cpp // Update and average speed rate of change // Get DCM const Matrix3f &rotMat = _ahrs.get_rotation_body_to_ned(); // Calculate speed rate of change float temp = rotMat.c.x * GRAVITY_MSS + AP::ins().get_accel().x; // take 5 point moving average float dsp = _vdot_filter.apply(temp); // Now we need to high-pass this signal to remove bias. _vdot_filter2.set_cutoff_frequency(1/(20*tau)); float dsp_bias = _vdot_filter2.apply(temp, dt); float dsp_cor = dsp - dsp_bias; Vector3f velned; if (_ahrs.get_velocity_NED(velned)) { // if possible use the EKF vertical velocity raw_climb_rate = -velned.z; } _climb_filter.set_cutoff_frequency(1/(3*tau)); smoothed_climb_rate = _climb_filter.apply(raw_climb_rate, dt); // Compute still-air sinkrate float roll = _ahrs.roll; float sinkrate = calculate_aircraft_sinkrate(roll, polar_K, polar_Cd0, polar_B); reading = raw_climb_rate + dsp_cor*_aspd_filt_constrained/GRAVITY_MSS + sinkrate; filtered_reading = TE_FILT * reading + (1 - TE_FILT) * filtered_reading; // Apply low pass timeconst filter for noise displayed_reading = TE_FILT_DISPLAYED * reading + (1 - TE_FILT_DISPLAYED) * displayed_reading; _prev_update_time = AP_HAL::micros64(); float expected_roll = atanf(powf(_aspd_filt_constrained,2)/(GRAVITY_MSS*_aparm.loiter_radius)); _expected_thermalling_sink = calculate_aircraft_sinkrate(expected_roll, polar_K, polar_Cd0, polar_B); AP::logger().Write("VAR", "TimeUS,aspd_raw,aspd_filt,alt,roll,raw,filt,cl,fc,exs,dsp,dspb", "Qfffffffffff", AP_HAL::micros64(), (double)0.0, (double)_aspd_filt_constrained, (double)alt, (double)roll, (double)reading, (double)filtered_reading, (double)raw_climb_rate, (double)smoothed_climb_rate, (double)_expected_thermalling_sink, (double)dsp, (double)dsp_bias); } float Variometer::calculate_aircraft_sinkrate(float phi, const float polar_K, const float polar_CD0, const float polar_B) { // Remove aircraft sink rate float CL0; // CL0 = 2*W/(rho*S*V^2) float C1; // C1 = CD0/CL0 float C2; // C2 = CDi0/CL0 = B*CL0 CL0 = polar_K / (_aspd_filt_constrained * _aspd_filt_constrained); C1 = polar_CD0 / CL0; // constant describing expected angle to overcome zero-lift drag C2 = polar_B * CL0; // constant describing expected angle to overcome lift induced drag at zero bank float cosphi = (1 - phi * phi / 2); // first two terms of mclaurin series for cos(phi) return _aspd_filt_constrained * (C1 + C2 / (cosphi * cosphi)); } float Variometer::calculate_circling_time_constant() { // Calculate a time constant to use to filter quantities over a full thermal orbit. // This is used for rejecting variation in e.g. climb rate, or estimated climb rate // potential, as the aircraft orbits the thermal. // Use the time to circle - variations at the circling frequency then have a gain of 25% // and the response to a step input will reach 64% of final value in three orbits. return _aparm.loiter_radius*2*M_PI/_aspd_filt_constrained; }