/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include "AP_MotorsMatrix.h"
#include
extern const AP_HAL::HAL& hal;
// init
void AP_MotorsMatrix::init(motor_frame_class frame_class, motor_frame_type frame_type)
{
// record requested frame class and type
_active_frame_class = frame_class;
_active_frame_type = frame_type;
if (frame_class == MOTOR_FRAME_SCRIPTING_MATRIX) {
// if Scripting frame class, do nothing scripting must call its own dedicated init function
return;
}
// setup the motors
setup_motors(frame_class, frame_type);
// enable fast channels or instant pwm
set_update_rate(_speed_hz);
}
#if AP_SCRIPTING_ENABLED
// dedicated init for lua scripting
bool AP_MotorsMatrix::init(uint8_t expected_num_motors)
{
if (_active_frame_class != MOTOR_FRAME_SCRIPTING_MATRIX) {
// not the correct class
return false;
}
// Make sure the correct number of motors have been added
uint8_t num_motors = 0;
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
num_motors++;
}
}
set_initialised_ok(expected_num_motors == num_motors);
if (!initialised_ok()) {
_mav_type = MAV_TYPE_GENERIC;
return false;
}
switch (num_motors) {
case 3:
_mav_type = MAV_TYPE_TRICOPTER;
break;
case 4:
_mav_type = MAV_TYPE_QUADROTOR;
break;
case 6:
_mav_type = MAV_TYPE_HEXAROTOR;
break;
case 8:
_mav_type = MAV_TYPE_OCTOROTOR;
break;
case 10:
_mav_type = MAV_TYPE_DECAROTOR;
break;
case 12:
_mav_type = MAV_TYPE_DODECAROTOR;
break;
default:
_mav_type = MAV_TYPE_GENERIC;
}
normalise_rpy_factors();
set_update_rate(_speed_hz);
return true;
}
// Set throttle factor from scripting
bool AP_MotorsMatrix::set_throttle_factor(int8_t motor_num, float throttle_factor)
{
if ((_active_frame_class != MOTOR_FRAME_SCRIPTING_MATRIX) ) {
// not the correct class
return false;
}
if (initialised_ok() || !motor_enabled[motor_num]) {
// Already setup or given motor is not enabled
return false;
}
_throttle_factor[motor_num] = throttle_factor;
return true;
}
#endif // AP_SCRIPTING_ENABLED
// set update rate to motors - a value in hertz
void AP_MotorsMatrix::set_update_rate(uint16_t speed_hz)
{
// record requested speed
_speed_hz = speed_hz;
uint32_t mask = 0;
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
mask |= 1U << i;
}
}
rc_set_freq(mask, _speed_hz);
}
// set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus)
void AP_MotorsMatrix::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type)
{
// exit immediately if armed or no change
if (armed() || (frame_class == _active_frame_class && _active_frame_type == frame_type)) {
return;
}
_active_frame_class = frame_class;
_active_frame_type = frame_type;
init(frame_class, frame_type);
}
void AP_MotorsMatrix::output_to_motors()
{
int8_t i;
switch (_spool_state) {
case SpoolState::SHUT_DOWN: {
// no output
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
_actuator[i] = 0.0f;
}
}
break;
}
case SpoolState::GROUND_IDLE:
// sends output to motors when armed but not flying
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
set_actuator_with_slew(_actuator[i], actuator_spin_up_to_ground_idle());
}
}
break;
case SpoolState::SPOOLING_UP:
case SpoolState::THROTTLE_UNLIMITED:
case SpoolState::SPOOLING_DOWN:
// set motor output based on thrust requests
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
set_actuator_with_slew(_actuator[i], thr_lin.thrust_to_actuator(_thrust_rpyt_out[i]));
}
}
break;
}
// convert output to PWM and send to each motor
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
rc_write(i, output_to_pwm(_actuator[i]));
}
}
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint32_t AP_MotorsMatrix::get_motor_mask()
{
uint32_t motor_mask = 0;
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
motor_mask |= 1U << i;
}
}
uint32_t mask = motor_mask_to_srv_channel_mask(motor_mask);
// add parent's mask
mask |= AP_MotorsMulticopter::get_motor_mask();
return mask;
}
// helper to return value scaled between boost and normal based on the value of _thrust_boost_ratio
// _thrust_boost_ratio of 1 -> return = boost_value
// _thrust_boost_ratio of 0 -> return = normal_value
float AP_MotorsMatrix::boost_ratio(float boost_value, float normal_value) const
{
return _thrust_boost_ratio * boost_value + (1.0 - _thrust_boost_ratio) * normal_value;
}
// output_armed - sends commands to the motors
// includes new scaling stability patch
void AP_MotorsMatrix::output_armed_stabilizing()
{
// apply voltage and air pressure compensation
const float compensation_gain = thr_lin.get_compensation_gain(); // compensation for battery voltage and altitude
// pitch thrust input value, +/- 1.0
const float roll_thrust = (_roll_in + _roll_in_ff) * compensation_gain;
// pitch thrust input value, +/- 1.0
const float pitch_thrust = (_pitch_in + _pitch_in_ff) * compensation_gain;
// yaw thrust input value, +/- 1.0
float yaw_thrust = (_yaw_in + _yaw_in_ff) * compensation_gain;
// throttle thrust input value, 0.0 - 1.0
float throttle_thrust = get_throttle() * compensation_gain;
// throttle thrust average maximum value, 0.0 - 1.0
float throttle_avg_max = _throttle_avg_max * compensation_gain;
// throttle thrust maximum value, 0.0 - 1.0, If thrust boost is active then do not limit maximum thrust
const float throttle_thrust_max = boost_ratio(1.0, _throttle_thrust_max * compensation_gain);
// sanity check throttle is above zero and below current limited throttle
if (throttle_thrust <= 0.0f) {
throttle_thrust = 0.0f;
limit.throttle_lower = true;
}
if (throttle_thrust >= throttle_thrust_max) {
throttle_thrust = throttle_thrust_max;
limit.throttle_upper = true;
}
// ensure that throttle_avg_max is between the input throttle and the maximum throttle
throttle_avg_max = constrain_float(throttle_avg_max, throttle_thrust, throttle_thrust_max);
// throttle providing maximum roll, pitch and yaw range
// calculate the highest allowed average thrust that will provide maximum control range
float throttle_thrust_best_rpy = MIN(0.5f, throttle_avg_max);
// calculate throttle that gives most possible room for yaw which is the lower of:
// 1. 0.5f - (rpy_low+rpy_high)/2.0 - this would give the maximum possible margin above the highest motor and below the lowest
// 2. the higher of:
// a) the pilot's throttle input
// b) the point _throttle_rpy_mix between the pilot's input throttle and hover-throttle
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this.
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise.
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favor reducing throttle *because* it provides better yaw control)
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favor reducing throttle instead of better yaw control because the pilot has commanded it
// Under the motor lost condition we remove the highest motor output from our calculations and let that motor go greater than 1.0
// To ensure control and maximum righting performance Hex and Octo have some optimal settings that should be used
// Y6 : MOT_YAW_HEADROOM = 350, ATC_RAT_RLL_IMAX = 1.0, ATC_RAT_PIT_IMAX = 1.0, ATC_RAT_YAW_IMAX = 0.5
// Octo-Quad (x8) x : MOT_YAW_HEADROOM = 300, ATC_RAT_RLL_IMAX = 0.375, ATC_RAT_PIT_IMAX = 0.375, ATC_RAT_YAW_IMAX = 0.375
// Octo-Quad (x8) + : MOT_YAW_HEADROOM = 300, ATC_RAT_RLL_IMAX = 0.75, ATC_RAT_PIT_IMAX = 0.75, ATC_RAT_YAW_IMAX = 0.375
// Usable minimums below may result in attitude offsets when motors are lost. Hex aircraft are only marginal and must be handles with care
// Hex : MOT_YAW_HEADROOM = 0, ATC_RAT_RLL_IMAX = 1.0, ATC_RAT_PIT_IMAX = 1.0, ATC_RAT_YAW_IMAX = 0.5
// Octo-Quad (x8) x : MOT_YAW_HEADROOM = 300, ATC_RAT_RLL_IMAX = 0.25, ATC_RAT_PIT_IMAX = 0.25, ATC_RAT_YAW_IMAX = 0.25
// Octo-Quad (x8) + : MOT_YAW_HEADROOM = 300, ATC_RAT_RLL_IMAX = 0.5, ATC_RAT_PIT_IMAX = 0.5, ATC_RAT_YAW_IMAX = 0.25
// Quads cannot make use of motor loss handling because it doesn't have enough degrees of freedom.
// calculate amount of yaw we can fit into the throttle range
// this is always equal to or less than the requested yaw from the pilot or rate controller
float yaw_allowed = 1.0f; // amount of yaw we can fit in
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
// calculate the thrust outputs for roll and pitch
_thrust_rpyt_out[i] = roll_thrust * _roll_factor[i] + pitch_thrust * _pitch_factor[i];
// Check the maximum yaw control that can be used on this channel
// Exclude any lost motors if thrust boost is enabled
if (!is_zero(_yaw_factor[i]) && (!_thrust_boost || i != _motor_lost_index)) {
const float thrust_rp_best_throttle = throttle_thrust_best_rpy + _thrust_rpyt_out[i];
float motor_room;
if (is_positive(yaw_thrust * _yaw_factor[i])) {
// room to upper limit
motor_room = 1.0 - thrust_rp_best_throttle;
} else {
// room to lower limit
motor_room = thrust_rp_best_throttle;
}
const float motor_yaw_allowed = MAX(motor_room, 0.0)/fabsf(_yaw_factor[i]);
yaw_allowed = MIN(yaw_allowed, motor_yaw_allowed);
}
}
}
// calculate the maximum yaw control that can be used
// todo: make _yaw_headroom 0 to 1
float yaw_allowed_min = (float)_yaw_headroom * 0.001f;
// increase yaw headroom to 50% if thrust boost enabled
yaw_allowed_min = boost_ratio(0.5, yaw_allowed_min);
// Let yaw access minimum amount of head room
yaw_allowed = MAX(yaw_allowed, yaw_allowed_min);
// Include the lost motor scaled by _thrust_boost_ratio to smoothly transition this motor in and out of the calculation
if (_thrust_boost && motor_enabled[_motor_lost_index]) {
// Check the maximum yaw control that can be used on this channel
// Exclude any lost motors if thrust boost is enabled
if (!is_zero(_yaw_factor[_motor_lost_index])){
const float thrust_rp_best_throttle = throttle_thrust_best_rpy + _thrust_rpyt_out[_motor_lost_index];
float motor_room;
if (is_positive(yaw_thrust * _yaw_factor[_motor_lost_index])) {
motor_room = 1.0 - thrust_rp_best_throttle;
} else {
motor_room = thrust_rp_best_throttle;
}
const float motor_yaw_allowed = MAX(motor_room, 0.0)/fabsf(_yaw_factor[_motor_lost_index]);
yaw_allowed = boost_ratio(yaw_allowed, MIN(yaw_allowed, motor_yaw_allowed));
}
}
if (fabsf(yaw_thrust) > yaw_allowed) {
// not all commanded yaw can be used
yaw_thrust = constrain_float(yaw_thrust, -yaw_allowed, yaw_allowed);
limit.yaw = true;
}
// add yaw control to thrust outputs
float rpy_low = 1.0f; // lowest thrust value
float rpy_high = -1.0f; // highest thrust value
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
_thrust_rpyt_out[i] = _thrust_rpyt_out[i] + yaw_thrust * _yaw_factor[i];
// record lowest roll + pitch + yaw command
if (_thrust_rpyt_out[i] < rpy_low) {
rpy_low = _thrust_rpyt_out[i];
}
// record highest roll + pitch + yaw command
// Exclude any lost motors if thrust boost is enabled
if (_thrust_rpyt_out[i] > rpy_high && (!_thrust_boost || i != _motor_lost_index)) {
rpy_high = _thrust_rpyt_out[i];
}
}
}
// Include the lost motor scaled by _thrust_boost_ratio to smoothly transition this motor in and out of the calculation
if (_thrust_boost) {
// record highest roll + pitch + yaw command
if (_thrust_rpyt_out[_motor_lost_index] > rpy_high && motor_enabled[_motor_lost_index]) {
rpy_high = boost_ratio(rpy_high, _thrust_rpyt_out[_motor_lost_index]);
}
}
// calculate any scaling needed to make the combined thrust outputs fit within the output range
float rpy_scale = 1.0f;
if (rpy_high - rpy_low > 1.0f) {
rpy_scale = 1.0f / (rpy_high - rpy_low);
}
if (throttle_avg_max + rpy_low < 0) {
rpy_scale = MIN(rpy_scale, -throttle_avg_max / rpy_low);
}
// calculate how close the motors can come to the desired throttle
rpy_high *= rpy_scale;
rpy_low *= rpy_scale;
throttle_thrust_best_rpy = -rpy_low;
float thr_adj = throttle_thrust - throttle_thrust_best_rpy;
if (rpy_scale < 1.0f) {
// Full range is being used by roll, pitch, and yaw.
limit.roll = true;
limit.pitch = true;
limit.yaw = true;
if (thr_adj > 0.0f) {
limit.throttle_upper = true;
}
thr_adj = 0.0f;
} else if (thr_adj < 0.0f) {
// Throttle can't be reduced to desired value
// todo: add lower limit flag and ensure it is handled correctly in altitude controller
thr_adj = 0.0f;
} else if (thr_adj > 1.0f - (throttle_thrust_best_rpy + rpy_high)) {
// Throttle can't be increased to desired value
thr_adj = 1.0f - (throttle_thrust_best_rpy + rpy_high);
limit.throttle_upper = true;
}
// add scaled roll, pitch, constrained yaw and throttle for each motor
const float throttle_thrust_best_plus_adj = throttle_thrust_best_rpy + thr_adj;
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
_thrust_rpyt_out[i] = (throttle_thrust_best_plus_adj * _throttle_factor[i]) + (rpy_scale * _thrust_rpyt_out[i]);
}
}
// determine throttle thrust for harmonic notch
// compensation_gain can never be zero
_throttle_out = throttle_thrust_best_plus_adj / compensation_gain;
// check for failed motor
check_for_failed_motor(throttle_thrust_best_plus_adj);
}
// check for failed motor
// should be run immediately after output_armed_stabilizing
// first argument is the sum of:
// a) throttle_thrust_best_rpy : throttle level (from 0 to 1) providing maximum roll, pitch and yaw range without climbing
// b) thr_adj: the difference between the pilot's desired throttle and throttle_thrust_best_rpy
// records filtered motor output values in _thrust_rpyt_out_filt array
// sets thrust_balanced to true if motors are balanced, false if a motor failure is detected
// sets _motor_lost_index to index of failed motor
void AP_MotorsMatrix::check_for_failed_motor(float throttle_thrust_best_plus_adj)
{
// record filtered and scaled thrust output for motor loss monitoring purposes
float alpha = _dt / (_dt + 0.5f);
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
_thrust_rpyt_out_filt[i] += alpha * (_thrust_rpyt_out[i] - _thrust_rpyt_out_filt[i]);
}
}
float rpyt_high = 0.0f;
float rpyt_sum = 0.0f;
uint8_t number_motors = 0.0f;
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
number_motors += 1;
rpyt_sum += _thrust_rpyt_out_filt[i];
// record highest filtered thrust command
if (_thrust_rpyt_out_filt[i] > rpyt_high) {
rpyt_high = _thrust_rpyt_out_filt[i];
// hold motor lost index constant while thrust boost is active
if (!_thrust_boost) {
_motor_lost_index = i;
}
}
}
}
float thrust_balance = 1.0f;
if (rpyt_sum > 0.1f) {
thrust_balance = rpyt_high * number_motors / rpyt_sum;
}
// ensure thrust balance does not activate for multirotors with less than 6 motors
if (number_motors >= 6 && thrust_balance >= 1.5f && _thrust_balanced) {
_thrust_balanced = false;
}
if (thrust_balance <= 1.25f && !_thrust_balanced) {
_thrust_balanced = true;
}
// check to see if thrust boost is using more throttle than _throttle_thrust_max
if ((_throttle_thrust_max * thr_lin.get_compensation_gain() > throttle_thrust_best_plus_adj) && (rpyt_high < 0.9f) && _thrust_balanced) {
_thrust_boost = false;
}
}
// output_test_seq - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsMatrix::_output_test_seq(uint8_t motor_seq, int16_t pwm)
{
// loop through all the possible orders spinning any motors that match that description
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i] && _test_order[i] == motor_seq) {
// turn on this motor
rc_write(i, pwm);
}
}
}
// output_test_num - spin a motor connected to the specified output channel
// (should only be performed during testing)
// If a motor output channel is remapped, the mapped channel is used.
// Returns true if motor output is set, false otherwise
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
bool AP_MotorsMatrix::output_test_num(uint8_t output_channel, int16_t pwm)
{
if (!armed()) {
return false;
}
// Is channel in supported range?
if (output_channel > AP_MOTORS_MAX_NUM_MOTORS - 1) {
return false;
}
// Is motor enabled?
if (!motor_enabled[output_channel]) {
return false;
}
rc_write(output_channel, pwm); // output
return true;
}
// add_motor
void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order, float throttle_factor)
{
if (initialised_ok()) {
// do not allow motors to be set if the current frame type has init correctly
return;
}
// ensure valid motor number is provided
if (motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS) {
// enable motor
motor_enabled[motor_num] = true;
// set roll, pitch, yaw and throttle factors
_roll_factor[motor_num] = roll_fac;
_pitch_factor[motor_num] = pitch_fac;
_yaw_factor[motor_num] = yaw_fac;
_throttle_factor[motor_num] = throttle_factor;
// set order that motor appears in test
_test_order[motor_num] = testing_order;
// call parent class method
add_motor_num(motor_num);
}
}
// add_motor using just position and prop direction - assumes that for each motor, roll and pitch factors are equal
void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order)
{
add_motor(motor_num, angle_degrees, angle_degrees, yaw_factor, testing_order);
}
// add_motor using position and prop direction. Roll and Pitch factors can differ (for asymmetrical frames)
void AP_MotorsMatrix::add_motor(int8_t motor_num, float roll_factor_in_degrees, float pitch_factor_in_degrees, float yaw_factor, uint8_t testing_order)
{
add_motor_raw(
motor_num,
cosf(radians(roll_factor_in_degrees + 90)),
cosf(radians(pitch_factor_in_degrees)),
yaw_factor,
testing_order);
}
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor
void AP_MotorsMatrix::remove_motor(int8_t motor_num)
{
// ensure valid motor number is provided
if (motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS) {
// disable the motor, set all factors to zero
motor_enabled[motor_num] = false;
_roll_factor[motor_num] = 0.0f;
_pitch_factor[motor_num] = 0.0f;
_yaw_factor[motor_num] = 0.0f;
_throttle_factor[motor_num] = 0.0f;
}
}
void AP_MotorsMatrix::add_motors(const struct MotorDef *motors, uint8_t num_motors)
{
for (uint8_t i=0; i