/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include "AP_Compass_AK8963.h" #include #define AK8963_I2C_ADDR 0x0c #define AK8963_WIA 0x00 # define AK8963_Device_ID 0x48 #define AK8963_HXL 0x03 /* bit definitions for AK8963 CNTL1 */ #define AK8963_CNTL1 0x0A # define AK8963_CONTINUOUS_MODE1 0x02 # define AK8963_CONTINUOUS_MODE2 0x06 # define AK8963_SELFTEST_MODE 0x08 # define AK8963_POWERDOWN_MODE 0x00 # define AK8963_FUSE_MODE 0x0f # define AK8963_16BIT_ADC 0x10 # define AK8963_14BIT_ADC 0x00 #define AK8963_CNTL2 0x0B # define AK8963_RESET 0x01 #define AK8963_ASAX 0x10 #define AK8963_MILLIGAUSS_SCALE 10.0f struct PACKED sample_regs { int16_t val[3]; uint8_t st2; }; extern const AP_HAL::HAL &hal; AP_Compass_AK8963::AP_Compass_AK8963(Compass &compass, AP_AK8963_BusDriver *bus) : AP_Compass_Backend(compass) , _bus(bus) { } AP_Compass_AK8963::~AP_Compass_AK8963() { delete _bus; } AP_Compass_Backend *AP_Compass_AK8963::probe(Compass &compass, AP_HAL::OwnPtr dev) { AP_AK8963_BusDriver *bus = new AP_AK8963_BusDriver_HALDevice(std::move(dev)); if (!bus) { return nullptr; } AP_Compass_AK8963 *sensor = new AP_Compass_AK8963(compass, bus); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } AP_Compass_Backend *AP_Compass_AK8963::probe_mpu9250(Compass &compass, AP_HAL::OwnPtr dev) { AP_InertialSensor &ins = *AP_InertialSensor::get_instance(); /* Allow MPU9250 to shortcut auxiliary bus and host bus */ ins.detect_backends(); return probe(compass, std::move(dev)); } AP_Compass_Backend *AP_Compass_AK8963::probe_mpu9250(Compass &compass, uint8_t mpu9250_instance) { AP_InertialSensor &ins = *AP_InertialSensor::get_instance(); AP_AK8963_BusDriver *bus = new AP_AK8963_BusDriver_Auxiliary(ins, HAL_INS_MPU9250_SPI, mpu9250_instance, AK8963_I2C_ADDR); if (!bus) { return nullptr; } AP_Compass_AK8963 *sensor = new AP_Compass_AK8963(compass, bus); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } bool AP_Compass_AK8963::init() { AP_HAL::Semaphore *bus_sem = _bus->get_semaphore(); if (!bus_sem || !_bus->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { hal.console->printf("AK8963: Unable to get bus semaphore\n"); return false; } if (!_bus->configure()) { hal.console->printf("AK8963: Could not configure the bus\n"); goto fail; } if (!_check_id()) { hal.console->printf("AK8963: Wrong id\n"); goto fail; } if (!_calibrate()) { hal.console->printf("AK8963: Could not read calibration data\n"); goto fail; } if (!_setup_mode()) { hal.console->printf("AK8963: Could not setup mode\n"); goto fail; } if (!_bus->start_measurements()) { hal.console->printf("AK8963: Could not start measurements\n"); goto fail; } _initialized = true; /* register the compass instance in the frontend */ _compass_instance = register_compass(); _bus->set_device_type(AP_COMPASS_TYPE_AK8963); set_dev_id(_compass_instance, _bus->get_bus_id()); bus_sem->give(); /* timer needs to be called every 10ms so set the freq_div to 10 */ if (!_bus->register_periodic_callback(10000, FUNCTOR_BIND_MEMBER(&AP_Compass_AK8963::_update, bool))) { // fallback to timer _timesliced = hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_Compass_AK8963::_update_timer, void), 10); } return true; fail: bus_sem->give(); return false; } void AP_Compass_AK8963::read() { if (!_initialized) { return; } if (_sem->take_nonblocking()) { if (_accum_count == 0) { /* We're not ready to publish */ _sem->give(); return; } Vector3f field = Vector3f(_mag_x_accum, _mag_y_accum, _mag_z_accum) / _accum_count; _mag_x_accum = _mag_y_accum = _mag_z_accum = 0; _accum_count = 0; _sem->give(); publish_filtered_field(field, _compass_instance); } } void AP_Compass_AK8963::_make_adc_sensitivity_adjustment(Vector3f& field) const { static const float ADC_16BIT_RESOLUTION = 0.15f; field *= ADC_16BIT_RESOLUTION; } void AP_Compass_AK8963::_make_factory_sensitivity_adjustment(Vector3f& field) const { field.x *= _magnetometer_ASA[0]; field.y *= _magnetometer_ASA[1]; field.z *= _magnetometer_ASA[2]; } bool AP_Compass_AK8963::_update() { struct sample_regs regs; Vector3f raw_field; uint32_t time_us = AP_HAL::micros(); if (!_bus->block_read(AK8963_HXL, (uint8_t *) ®s, sizeof(regs))) { goto fail; } /* Check for overflow. See AK8963's datasheet, section * 6.4.3.6 - Magnetic Sensor Overflow. */ if ((regs.st2 & 0x08)) { goto fail; } raw_field = Vector3f(regs.val[0], regs.val[1], regs.val[2]); if (is_zero(raw_field.x) && is_zero(raw_field.y) && is_zero(raw_field.z)) { goto fail; } _make_factory_sensitivity_adjustment(raw_field); _make_adc_sensitivity_adjustment(raw_field); raw_field *= AK8963_MILLIGAUSS_SCALE; // rotate raw_field from sensor frame to body frame rotate_field(raw_field, _compass_instance); // publish raw_field (uncorrected point sample) for calibration use publish_raw_field(raw_field, time_us, _compass_instance); // correct raw_field for known errors correct_field(raw_field, _compass_instance); if (_sem->take(0)) { _mag_x_accum += raw_field.x; _mag_y_accum += raw_field.y; _mag_z_accum += raw_field.z; _accum_count++; if (_accum_count == 10) { _mag_x_accum /= 2; _mag_y_accum /= 2; _mag_z_accum /= 2; _accum_count = 5; } _sem->give(); } fail: return true; } /* update from timer callback */ void AP_Compass_AK8963::_update_timer() { uint32_t now = AP_HAL::micros(); if (!_timesliced && now - _last_update_timestamp < 10000) { return; } if (!_bus->get_semaphore()->take_nonblocking()) { return; } _update(); _last_update_timestamp = now; _bus->get_semaphore()->give(); } bool AP_Compass_AK8963::_check_id() { for (int i = 0; i < 5; i++) { uint8_t deviceid = 0; /* Read AK8963's id */ if (_bus->register_read(AK8963_WIA, &deviceid) && deviceid == AK8963_Device_ID) { return true; } } return false; } bool AP_Compass_AK8963::_setup_mode() { return _bus->register_write(AK8963_CNTL1, AK8963_CONTINUOUS_MODE2 | AK8963_16BIT_ADC); } bool AP_Compass_AK8963::_reset() { return _bus->register_write(AK8963_CNTL2, AK8963_RESET); } bool AP_Compass_AK8963::_calibrate() { /* Enable FUSE-mode in order to be able to read calibration data */ _bus->register_write(AK8963_CNTL1, AK8963_FUSE_MODE | AK8963_16BIT_ADC); uint8_t response[3]; _bus->block_read(AK8963_ASAX, response, 3); for (int i = 0; i < 3; i++) { float data = response[i]; _magnetometer_ASA[i] = ((data - 128) / 256 + 1); } return true; } /* AP_HAL::I2CDevice implementation of the AK8963 */ AP_AK8963_BusDriver_HALDevice::AP_AK8963_BusDriver_HALDevice(AP_HAL::OwnPtr dev) : _dev(std::move(dev)) { } bool AP_AK8963_BusDriver_HALDevice::block_read(uint8_t reg, uint8_t *buf, uint32_t size) { return _dev->read_registers(reg, buf, size); } bool AP_AK8963_BusDriver_HALDevice::register_read(uint8_t reg, uint8_t *val) { return _dev->read_registers(reg, val, 1); } bool AP_AK8963_BusDriver_HALDevice::register_write(uint8_t reg, uint8_t val) { return _dev->write_register(reg, val); } AP_HAL::Semaphore *AP_AK8963_BusDriver_HALDevice::get_semaphore() { return _dev->get_semaphore(); } AP_HAL::Device::PeriodicHandle AP_AK8963_BusDriver_HALDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb) { return _dev->register_periodic_callback(period_usec, cb); } /* AK8963 on an auxiliary bus of IMU driver */ AP_AK8963_BusDriver_Auxiliary::AP_AK8963_BusDriver_Auxiliary(AP_InertialSensor &ins, uint8_t backend_id, uint8_t backend_instance, uint8_t addr) { /* * Only initialize members. Fails are handled by configure or while * getting the semaphore */ _bus = ins.get_auxiliary_bus(backend_id, backend_instance); if (!_bus) { return; } _slave = _bus->request_next_slave(addr); } AP_AK8963_BusDriver_Auxiliary::~AP_AK8963_BusDriver_Auxiliary() { /* After started it's owned by AuxiliaryBus */ if (!_started) { delete _slave; } } bool AP_AK8963_BusDriver_Auxiliary::block_read(uint8_t reg, uint8_t *buf, uint32_t size) { if (_started) { /* * We can only read a block when reading the block of sample values - * calling with any other value is a mistake */ assert(reg == AK8963_HXL); int n = _slave->read(buf); return n == static_cast(size); } int r = _slave->passthrough_read(reg, buf, size); return r > 0 && static_cast(r) == size; } bool AP_AK8963_BusDriver_Auxiliary::register_read(uint8_t reg, uint8_t *val) { return _slave->passthrough_read(reg, val, 1) == 1; } bool AP_AK8963_BusDriver_Auxiliary::register_write(uint8_t reg, uint8_t val) { return _slave->passthrough_write(reg, val) == 1; } AP_HAL::Semaphore *AP_AK8963_BusDriver_Auxiliary::get_semaphore() { return _bus ? _bus->get_semaphore() : nullptr; } bool AP_AK8963_BusDriver_Auxiliary::configure() { if (!_bus || !_slave) { return false; } return true; } bool AP_AK8963_BusDriver_Auxiliary::start_measurements() { if (_bus->register_periodic_read(_slave, AK8963_HXL, sizeof(sample_regs)) < 0) { return false; } _started = true; return true; } AP_HAL::Device::PeriodicHandle AP_AK8963_BusDriver_Auxiliary::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb) { return _bus->register_periodic_callback(period_usec, cb); } // set device type within a device class void AP_AK8963_BusDriver_Auxiliary::set_device_type(uint8_t devtype) { _bus->set_device_type(devtype); } // return 24 bit bus identifier uint32_t AP_AK8963_BusDriver_Auxiliary::get_bus_id(void) const { return _bus->get_bus_id(); }