import math import os, pexpect, sys, time, random from rotmat import Vector3, Matrix3 from subprocess import call, check_call,Popen, PIPE def m2ft(x): '''meters to feet''' return float(x) / 0.3048 def ft2m(x): '''feet to meters''' return float(x) * 0.3048 def kt2mps(x): return x * 0.514444444 def mps2kt(x): return x / 0.514444444 def topdir(): '''return top of git tree where autotest is running from''' d = os.path.dirname(os.path.realpath(__file__)) assert(os.path.basename(d)=='pysim') d = os.path.dirname(d) assert(os.path.basename(d)=='autotest') d = os.path.dirname(d) assert(os.path.basename(d)=='Tools') d = os.path.dirname(d) return d def reltopdir(path): '''return a path relative to topdir()''' return os.path.normpath(os.path.join(topdir(), path)) def run_cmd(cmd, dir=".", show=False, output=False, checkfail=True): '''run a shell command''' if show: print("Running: '%s' in '%s'" % (cmd, dir)) if output: return Popen([cmd], shell=True, stdout=PIPE, cwd=dir).communicate()[0] elif checkfail: return check_call(cmd, shell=True, cwd=dir) else: return call(cmd, shell=True, cwd=dir) def rmfile(path): '''remove a file if it exists''' try: os.unlink(path) except Exception: pass def deltree(path): '''delete a tree of files''' run_cmd('rm -rf %s' % path) def build_SIL(atype, target='sitl'): '''build desktop SIL''' run_cmd("make clean %s" % target, dir=reltopdir(atype), checkfail=True) return True def build_AVR(atype, board='mega2560'): '''build AVR binaries''' config = open(reltopdir('config.mk'), mode='w') config.write(''' BOARD=%s PORT=/dev/null ''' % board) config.close() run_cmd("make clean", dir=reltopdir(atype), checkfail=True) run_cmd("make", dir=reltopdir(atype), checkfail=True) return True # list of pexpect children to close on exit close_list = [] def pexpect_autoclose(p): '''mark for autoclosing''' global close_list close_list.append(p) def pexpect_close(p): '''close a pexpect child''' global close_list try: p.close() except Exception: pass try: p.close(force=True) except Exception: pass if p in close_list: close_list.remove(p) def pexpect_close_all(): '''close all pexpect children''' global close_list for p in close_list[:]: pexpect_close(p) def pexpect_drain(p): '''drain any pending input''' try: p.read_nonblocking(1000, timeout=0) except pexpect.TIMEOUT: pass def start_SIL(atype, valgrind=False, wipe=False, CLI=False, height=None): '''launch a SIL instance''' cmd="" if valgrind and os.path.exists('/usr/bin/valgrind'): cmd += 'valgrind -q --log-file=%s-valgrind.log ' % atype cmd += reltopdir('tmp/%s.build/%s.elf' % (atype, atype)) if wipe: cmd += ' -w' if CLI: cmd += ' -s' if height is not None: cmd += ' -H %u' % height ret = pexpect.spawn(cmd, logfile=sys.stdout, timeout=5) ret.delaybeforesend = 0 pexpect_autoclose(ret) ret.expect('Waiting for connection') return ret def start_MAVProxy_SIL(atype, aircraft=None, setup=False, master='tcp:127.0.0.1:5760', options=None, logfile=sys.stdout): '''launch mavproxy connected to a SIL instance''' global close_list MAVPROXY = reltopdir('../MAVProxy/mavproxy.py') cmd = MAVPROXY + ' --master=%s --out=127.0.0.1:14550' % master if setup: cmd += ' --setup' if aircraft is None: aircraft = 'test.%s' % atype cmd += ' --aircraft=%s' % aircraft if options is not None: cmd += ' ' + options ret = pexpect.spawn(cmd, logfile=logfile, timeout=60) ret.delaybeforesend = 0 pexpect_autoclose(ret) return ret def expect_setup_callback(e, callback): '''setup a callback that is called once a second while waiting for patterns''' def _expect_callback(pattern, timeout=e.timeout): tstart = time.time() while time.time() < tstart + timeout: try: ret = e.expect_saved(pattern, timeout=1) return ret except pexpect.TIMEOUT: e.expect_user_callback(e) pass print("Timed out looking for %s" % pattern) raise pexpect.TIMEOUT(timeout) e.expect_user_callback = callback e.expect_saved = e.expect e.expect = _expect_callback def mkdir_p(dir): '''like mkdir -p''' if not dir: return if dir.endswith("/"): mkdir_p(dir[:-1]) return if os.path.isdir(dir): return mkdir_p(os.path.dirname(dir)) os.mkdir(dir) def loadfile(fname): '''load a file as a string''' f = open(fname, mode='r') r = f.read() f.close() return r def lock_file(fname): '''lock a file''' import fcntl f = open(fname, mode='w') try: fcntl.lockf(f, fcntl.LOCK_EX | fcntl.LOCK_NB) except Exception: return None return f def check_parent(parent_pid=os.getppid()): '''check our parent process is still alive''' try: os.kill(parent_pid, 0) except Exception: print("Parent had finished - exiting") sys.exit(1) def EarthRatesToBodyRates(dcm, earth_rates): '''convert the angular velocities from earth frame to body frame. Thanks to James Goppert for the formula all inputs and outputs are in radians returns a gyro vector in body frame, in rad/s ''' from math import sin, cos (phi, theta, psi) = dcm.to_euler() phiDot = earth_rates.x thetaDot = earth_rates.y psiDot = earth_rates.z p = phiDot - psiDot*sin(theta) q = cos(phi)*thetaDot + sin(phi)*psiDot*cos(theta) r = cos(phi)*psiDot*cos(theta) - sin(phi)*thetaDot return Vector3(p, q, r) def BodyRatesToEarthRates(dcm, gyro): '''convert the angular velocities from body frame to earth frame. all inputs and outputs are in radians/s returns a earth rate vector ''' from math import sin, cos, tan, fabs p = gyro.x q = gyro.y r = gyro.z (phi, theta, psi) = dcm.to_euler() phiDot = p + tan(theta)*(q*sin(phi) + r*cos(phi)) thetaDot = q*cos(phi) - r*sin(phi) if fabs(cos(theta)) < 1.0e-20: theta += 1.0e-10 psiDot = (q*sin(phi) + r*cos(phi))/cos(theta) return Vector3(phiDot, thetaDot, psiDot) class Wind(object): '''a wind generation object''' def __init__(self, windstring, cross_section=0.1): a = windstring.split(',') if len(a) != 3: raise RuntimeError("Expected wind in speed,direction,turbulance form, not %s" % windstring) self.speed = float(a[0]) # m/s self.direction = float(a[1]) # direction the wind is going in self.turbulance= float(a[2]) # turbulance factor (standard deviation) # the cross-section of the aircraft to wind. This is multiplied by the # difference in the wind and the velocity of the aircraft to give the acceleration self.cross_section = cross_section # the time constant for the turbulance - the average period of the # changes over time self.turbulance_time_constant = 5.0 # wind time record self.tlast = time.time() # initial turbulance multiplier self.turbulance_mul = 1.0 def current(self, deltat=None): '''return current wind speed and direction as a tuple speed is in m/s, direction in degrees ''' if deltat is None: tnow = time.time() deltat = tnow - self.tlast self.tlast = tnow # update turbulance random walk w_delta = math.sqrt(deltat)*(1.0-random.gauss(1.0, self.turbulance)) w_delta -= (self.turbulance_mul-1.0)*(deltat/self.turbulance_time_constant) self.turbulance_mul += w_delta speed = self.speed * math.fabs(self.turbulance_mul) return (speed, self.direction) def accel(self, velocity, deltat=None): '''return current wind acceleration in ground frame. The velocity is a Vector3 of the current velocity of the aircraft in earth frame, m/s''' from math import radians (speed, direction) = self.current(deltat=deltat) # wind vector v = Vector3(speed, 0, 0) m = Matrix3() m.from_euler(0, 0, radians(direction)) wind = m.transposed() * v # relative wind vector relwind = wind - velocity # add in cross-section effect a = relwind * self.cross_section return a if __name__ == "__main__": import doctest doctest.testmod()