#include "AP_BattMonitor_config.h" #if AP_BATTERY_INA2XX_ENABLED /* supports INA226, INA228 and INA238 I2C battery monitors */ #include #include "AP_BattMonitor_INA2xx.h" extern const AP_HAL::HAL& hal; // INA226 specific registers #define REG_226_CONFIG 0x00 #define REG_226_CONFIG_DEFAULT 0x4127 #define REG_226_CONFIG_RESET 0x8000 #define REG_226_BUS_VOLTAGE 0x02 #define REG_226_CURRENT 0x04 #define REG_226_CALIBRATION 0x05 #define REG_226_MANUFACT_ID 0xfe // INA228 specific registers #define REG_228_CONFIG 0x00 #define REG_228_CONFIG_RESET 0x8000 #define REG_228_ADC_CONFIG 0x01 #define REG_228_SHUNT_CAL 0x02 #define REG_228_VBUS 0x05 #define REG_228_CURRENT 0x07 #define REG_228_MANUFACT_ID 0x3e #define REG_228_DEVICE_ID 0x3f // INA238 specific registers #define REG_238_CONFIG 0x00 #define REG_238_CONFIG_RESET 0x8000 #define REG_238_ADC_CONFIG 0x01 #define REG_238_SHUNT_CAL 0x02 #define REG_238_VBUS 0x05 #define REG_238_CURRENT 0x07 #define REG_238_MANUFACT_ID 0x3e #define REG_238_DEVICE_ID 0x3f // this should become a parameter in future #define MAX_AMPS 90.0 #ifndef HAL_BATTMON_INA2XX_BUS #define HAL_BATTMON_INA2XX_BUS 0 #endif #ifndef HAL_BATTMON_INA2XX_ADDR #define HAL_BATTMON_INA2XX_ADDR 0 #endif // list of addresses to probe if I2C_ADDR is zero const uint8_t AP_BattMonitor_INA2XX::i2c_probe_addresses[] { 0x41, 0x44, 0x45 }; const AP_Param::GroupInfo AP_BattMonitor_INA2XX::var_info[] = { // @Param: I2C_BUS // @DisplayName: Battery monitor I2C bus number // @Description: Battery monitor I2C bus number // @Range: 0 3 // @User: Advanced // @RebootRequired: True AP_GROUPINFO("I2C_BUS", 25, AP_BattMonitor_INA2XX, i2c_bus, HAL_BATTMON_INA2XX_BUS), // @Param: I2C_ADDR // @DisplayName: Battery monitor I2C address // @Description: Battery monitor I2C address. If this is zero then probe list of supported addresses // @Range: 0 127 // @User: Advanced // @RebootRequired: True AP_GROUPINFO("I2C_ADDR", 26, AP_BattMonitor_INA2XX, i2c_address, HAL_BATTMON_INA2XX_ADDR), AP_GROUPEND }; AP_BattMonitor_INA2XX::AP_BattMonitor_INA2XX(AP_BattMonitor &mon, AP_BattMonitor::BattMonitor_State &mon_state, AP_BattMonitor_Params ¶ms) : AP_BattMonitor_Backend(mon, mon_state, params) { AP_Param::setup_object_defaults(this, var_info); _state.var_info = var_info; } void AP_BattMonitor_INA2XX::init(void) { dev = hal.i2c_mgr->get_device(i2c_bus, i2c_address, 100000, false, 20); if (!dev) { return; } // register now and configure in the timer callbacks dev->register_periodic_callback(25000, FUNCTOR_BIND_MEMBER(&AP_BattMonitor_INA2XX::timer, void)); } bool AP_BattMonitor_INA2XX::configure(DevType dtype) { switch (dtype) { case DevType::UNKNOWN: return false; case DevType::INA226: { // configure for MAX_AMPS const uint16_t conf = (0x2<<9) | (0x5<<6) | (0x5<<3) | 0x7; // 2ms conv time, 16x sampling const float rShunt = 0.0005; current_LSB = MAX_AMPS / 32768.0; voltage_LSB = 0.00125; // 1.25mV/bit const uint16_t cal = uint16_t(0.00512 / (current_LSB * rShunt)); if (write_word(REG_226_CONFIG, REG_226_CONFIG_RESET) && // reset write_word(REG_226_CONFIG, conf) && write_word(REG_226_CALIBRATION, cal)) { dev_type = dtype; return true; } break; } case DevType::INA228: { // configure for MAX_AMPS voltage_LSB = 195.3125e-6; // 195.3125 uV/LSB const float rShunt = 0.0005; current_LSB = MAX_AMPS / (1<<19); const uint16_t shunt_cal = uint16_t(13107.2e6 * current_LSB * rShunt) & 0x7FFF; if (write_word(REG_228_CONFIG, REG_228_CONFIG_RESET) && // reset write_word(REG_228_CONFIG, 0) && write_word(REG_228_SHUNT_CAL, shunt_cal)) { dev_type = dtype; return true; } break; } case DevType::INA238: { // configure for MAX_AMPS voltage_LSB = 3.125e-3; // 3.125mV/LSB const float rShunt = 0.0005; current_LSB = MAX_AMPS / (1<<15); const uint16_t shunt_cal = uint16_t(819.2e6 * current_LSB * rShunt) & 0x7FFF; if (write_word(REG_238_CONFIG, REG_238_CONFIG_RESET) && // reset write_word(REG_238_CONFIG, 0) && write_word(REG_238_SHUNT_CAL, shunt_cal)) { dev_type = dtype; return true; } break; } } return false; } /// read the battery_voltage and current, should be called at 10hz void AP_BattMonitor_INA2XX::read(void) { WITH_SEMAPHORE(accumulate.sem); _state.healthy = accumulate.count > 0; if (!_state.healthy) { return; } _state.voltage = accumulate.volt_sum / accumulate.count; _state.current_amps = accumulate.current_sum / accumulate.count; accumulate.volt_sum = 0; accumulate.current_sum = 0; accumulate.count = 0; const uint32_t tnow = AP_HAL::micros(); const uint32_t dt_us = tnow - _state.last_time_micros; // update total current drawn since startup update_consumed(_state, dt_us); _state.last_time_micros = tnow; } /* read 16 bit word from register returns true if read was successful, false if failed */ bool AP_BattMonitor_INA2XX::read_word16(const uint8_t reg, int16_t& data) const { // read the appropriate register from the device if (!dev->read_registers(reg, (uint8_t *)&data, sizeof(data))) { return false; } // convert byte order data = int16_t(be16toh(uint16_t(data))); return true; } /* read 24 bit signed value from register returns true if read was successful, false if failed */ bool AP_BattMonitor_INA2XX::read_word24(const uint8_t reg, int32_t& data) const { // read the appropriate register from the device uint8_t d[3]; if (!dev->read_registers(reg, d, sizeof(d))) { return false; } // 24 bit 2s complement data. Shift into upper 24 bits of int32_t then divide by 256 // to cope with negative numbers properly data = d[0]<<24 | d[1]<<16 | d[2] << 8; data = data / 256; return true; } /* write word to a register, byte swapped returns true if write was successful, false if failed */ bool AP_BattMonitor_INA2XX::write_word(const uint8_t reg, const uint16_t data) const { const uint8_t b[3] { reg, uint8_t(data >> 8), uint8_t(data&0xff) }; return dev->transfer(b, sizeof(b), nullptr, 0); } /* detect device type. This may happen well after power on if battery is not plugged in yet */ bool AP_BattMonitor_INA2XX::detect_device(void) { uint32_t now = AP_HAL::millis(); if (now - last_detect_ms < 200) { // don't flood the bus return false; } last_detect_ms = now; int16_t id; WITH_SEMAPHORE(dev->get_semaphore()); if (i2c_address.get() == 0) { dev->set_address(i2c_probe_addresses[i2c_probe_next]); i2c_probe_next = (i2c_probe_next+1) % sizeof(i2c_probe_addresses); } if (read_word16(REG_228_MANUFACT_ID, id) && id == 0x5449 && read_word16(REG_228_DEVICE_ID, id) && (id&0xFFF0) == 0x2280) { return configure(DevType::INA228); } if (read_word16(REG_238_MANUFACT_ID, id) && id == 0x5449 && read_word16(REG_238_DEVICE_ID, id) && (id&0xFFF0) == 0x2380) { return configure(DevType::INA238); } if (read_word16(REG_226_MANUFACT_ID, id) && id == 0x5449 && write_word(REG_226_CONFIG, REG_226_CONFIG_RESET) && write_word(REG_226_CONFIG, REG_226_CONFIG_DEFAULT) && read_word16(REG_226_CONFIG, id) && id == REG_226_CONFIG_DEFAULT) { return configure(DevType::INA226); } return false; } void AP_BattMonitor_INA2XX::timer(void) { if (dev_type == DevType::UNKNOWN) { if (!detect_device()) { return; } } float voltage = 0, current = 0; switch (dev_type) { case DevType::UNKNOWN: return; case DevType::INA226: { int16_t bus_voltage16, current16; if (!read_word16(REG_226_BUS_VOLTAGE, bus_voltage16) || !read_word16(REG_226_CURRENT, current16)) { failed_reads++; if (failed_reads > 10) { // device has disconnected, we need to reconfigure it dev_type = DevType::UNKNOWN; } return; } voltage = bus_voltage16 * voltage_LSB; current = current16 * current_LSB; break; } case DevType::INA228: { int32_t bus_voltage24, current24; if (!read_word24(REG_228_VBUS, bus_voltage24) || !read_word24(REG_228_CURRENT, current24)) { failed_reads++; if (failed_reads > 10) { // device has disconnected, we need to reconfigure it dev_type = DevType::UNKNOWN; } return; } voltage = (bus_voltage24>>4) * voltage_LSB; current = (current24>>4) * current_LSB; break; } case DevType::INA238: { int16_t bus_voltage16, current16; if (!read_word16(REG_238_VBUS, bus_voltage16) || !read_word16(REG_238_CURRENT, current16)) { failed_reads++; if (failed_reads > 10) { // device has disconnected, we need to reconfigure it dev_type = DevType::UNKNOWN; } return; } voltage = bus_voltage16 * voltage_LSB; current = current16 * current_LSB; break; } } failed_reads = 0; WITH_SEMAPHORE(accumulate.sem); accumulate.volt_sum += voltage; accumulate.current_sum += current; accumulate.count++; } #endif // AP_BATTERY_INA2XX_ENABLED