#include "AP_TECS.h" #include #include #include #include extern const AP_HAL::HAL& hal; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include # define Debug(fmt, args ...) do {printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0) #else # define Debug(fmt, args ...) #endif //Debug("%.2f %.2f %.2f %.2f \n", var1, var2, var3, var4); // table of user settable parameters const AP_Param::GroupInfo AP_TECS::var_info[] = { // @Param: CLMB_MAX // @DisplayName: Maximum Climb Rate (metres/sec) // @Description: Maximum demanded climb rate. Do not set higher than the climb speed at THR_MAX at TRIM_ARSPD_CM when the battery is at low voltage. Reduce value if airspeed cannot be maintained on ascent. Increase value if throttle does not increase significantly to ascend. // @Increment: 0.1 // @Range: 0.1 20.0 // @User: Standard AP_GROUPINFO("CLMB_MAX", 0, AP_TECS, _maxClimbRate, 5.0f), // @Param: SINK_MIN // @DisplayName: Minimum Sink Rate (metres/sec) // @Description: Minimum sink rate when at THR_MIN and TRIM_ARSPD_CM. // @Increment: 0.1 // @Range: 0.1 10.0 // @User: Standard AP_GROUPINFO("SINK_MIN", 1, AP_TECS, _minSinkRate, 2.0f), // @Param: TIME_CONST // @DisplayName: Controller time constant (sec) // @Description: Time constant of the TECS control algorithm. Small values make faster altitude corrections but can cause overshoot and aggressive behavior. // @Range: 3.0 10.0 // @Increment: 0.2 // @User: Advanced AP_GROUPINFO("TIME_CONST", 2, AP_TECS, _timeConst, 5.0f), // @Param: THR_DAMP // @DisplayName: Controller throttle damping // @Description: Damping gain for throttle demand loop. Increase to add throttle activity to dampen oscillations in speed and height. // @Range: 0.1 1.0 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("THR_DAMP", 3, AP_TECS, _thrDamp, 0.5f), // @Param: INTEG_GAIN // @DisplayName: Controller integrator // @Description: Integrator gain to trim out long-term speed and height errors. // @Range: 0.0 0.5 // @Increment: 0.02 // @User: Advanced AP_GROUPINFO("INTEG_GAIN", 4, AP_TECS, _integGain, 0.3f), // @Param: VERT_ACC // @DisplayName: Vertical Acceleration Limit (metres/sec^2) // @Description: Maximum vertical acceleration used to correct speed or height errors. // @Range: 1.0 10.0 // @Increment: 0.5 // @User: Advanced AP_GROUPINFO("VERT_ACC", 5, AP_TECS, _vertAccLim, 7.0f), // @Param: HGT_OMEGA // @DisplayName: Height complementary filter frequency (radians/sec) // @Description: This is the cross-over frequency of the complementary filter used to fuse vertical acceleration and baro alt to obtain an estimate of height rate and height. // @Range: 1.0 5.0 // @Increment: 0.05 // @User: Advanced AP_GROUPINFO("HGT_OMEGA", 6, AP_TECS, _hgtCompFiltOmega, 3.0f), // @Param: SPD_OMEGA // @DisplayName: Speed complementary filter frequency (radians/sec) // @Description: This is the cross-over frequency of the complementary filter used to fuse longitudinal acceleration and airspeed to obtain a lower noise and lag estimate of airspeed. // @Range: 0.5 2.0 // @Increment: 0.05 // @User: Advanced AP_GROUPINFO("SPD_OMEGA", 7, AP_TECS, _spdCompFiltOmega, 2.0f), // @Param: RLL2THR // @DisplayName: Bank angle compensation gain // @Description: Gain from bank angle to throttle to compensate for loss of airspeed from drag in turns. Set to approximately 10x the sink rate in m/s caused by a 45-degree turn. High efficiency models may need less while less efficient aircraft may need more. Should be tuned in an automatic mission with waypoints and turns greater than 90 degrees. Tune with PTCH2SRV_RLL and KFF_RDDRMIX to achieve constant airspeed, constant altitude turns. // @Range: 5.0 30.0 // @Increment: 1.0 // @User: Advanced AP_GROUPINFO("RLL2THR", 8, AP_TECS, _rollComp, 10.0f), // @Param: SPDWEIGHT // @DisplayName: Weighting applied to speed control // @Description: Mixing of pitch and throttle correction for height and airspeed errors. Pitch controls altitude and throttle controls airspeed if set to 0. Pitch controls airspeed and throttle controls altitude if set to 2 (good for gliders). Blended if set to 1. // @Range: 0.0 2.0 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("SPDWEIGHT", 9, AP_TECS, _spdWeight, 1.0f), // @Param: PTCH_DAMP // @DisplayName: Controller pitch damping // @Description: Damping gain for pitch control from TECS control. Increasing may correct for oscillations in speed and height, but too much may cause additional oscillation and degraded control. // @Range: 0.1 1.0 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("PTCH_DAMP", 10, AP_TECS, _ptchDamp, 0.3f), // @Param: SINK_MAX // @DisplayName: Maximum Descent Rate (metres/sec) // @Description: Maximum demanded descent rate. Do not set higher than the vertical speed the aircraft can maintain at THR_MIN, TECS_PITCH_MIN, and ARSPD_FBW_MAX. // @Increment: 0.1 // @Range: 0.0 20.0 // @User: Standard AP_GROUPINFO("SINK_MAX", 11, AP_TECS, _maxSinkRate, 5.0f), // @Param: LAND_ARSPD // @DisplayName: Airspeed during landing approach (m/s) // @Description: When performing an autonomus landing, this value is used as the goal airspeed during approach. Max airspeed allowed is Trim Airspeed or ARSPD_FBW_MAX as defined by LAND_OPTIONS bitmask. Note that this parameter is not useful if your platform does not have an airspeed sensor (use TECS_LAND_THR instead). If negative then this value is not used during landing. // @Range: -1 127 // @Increment: 1 // @User: Standard AP_GROUPINFO("LAND_ARSPD", 12, AP_TECS, _landAirspeed, -1), // @Param: LAND_THR // @DisplayName: Cruise throttle during landing approach (percentage) // @Description: Use this parameter instead of LAND_ARSPD if your platform does not have an airspeed sensor. It is the cruise throttle during landing approach. If this value is negative then it is disabled and TECS_LAND_ARSPD is used instead. // @Range: -1 100 // @Increment: 0.1 // @User: Standard AP_GROUPINFO("LAND_THR", 13, AP_TECS, _landThrottle, -1), // @Param: LAND_SPDWGT // @DisplayName: Weighting applied to speed control during landing. // @Description: Same as SPDWEIGHT parameter, with the exception that this parameter is applied during landing flight stages. A value closer to 2 will result in the plane ignoring height error during landing and our experience has been that the plane will therefore keep the nose up -- sometimes good for a glider landing (with the side effect that you will likely glide a ways past the landing point). A value closer to 0 results in the plane ignoring speed error -- use caution when lowering the value below 1 -- ignoring speed could result in a stall. Values between 0 and 2 are valid values for a fixed landing weight. When using -1 the weight will be scaled during the landing. At the start of the landing approach it starts with TECS_SPDWEIGHT and scales down to 0 by the time you reach the land point. Example: Halfway down the landing approach you'll effectively have a weight of TECS_SPDWEIGHT/2. // @Range: -1.0 2.0 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("LAND_SPDWGT", 14, AP_TECS, _spdWeightLand, -1.0f), // @Param: PITCH_MAX // @DisplayName: Maximum pitch in auto flight // @Description: Overrides LIM_PITCH_MAX in automatic throttle modes to reduce climb rates. Uses LIM_PITCH_MAX if set to 0. For proper TECS tuning, set to the angle that the aircraft can climb at TRIM_ARSPD_CM and THR_MAX. // @Range: 0 45 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PITCH_MAX", 15, AP_TECS, _pitch_max, 15), // @Param: PITCH_MIN // @DisplayName: Minimum pitch in auto flight // @Description: Overrides LIM_PITCH_MIN in automatic throttle modes to reduce descent rates. Uses LIM_PITCH_MIN if set to 0. For proper TECS tuning, set to the angle that the aircraft can descend at without overspeeding. // @Range: -45 0 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PITCH_MIN", 16, AP_TECS, _pitch_min, 0), // @Param: LAND_SINK // @DisplayName: Sink rate for final landing stage // @Description: The sink rate in meters/second for the final stage of landing. // @Range: 0.0 2.0 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("LAND_SINK", 17, AP_TECS, _land_sink, 0.25f), // @Param: LAND_TCONST // @DisplayName: Land controller time constant (sec) // @Description: This is the time constant of the TECS control algorithm when in final landing stage of flight. It should be smaller than TECS_TIME_CONST to allow for faster flare // @Range: 1.0 5.0 // @Increment: 0.2 // @User: Advanced AP_GROUPINFO("LAND_TCONST", 18, AP_TECS, _landTimeConst, 2.0f), // @Param: LAND_DAMP // @DisplayName: Controller sink rate to pitch gain during flare // @Description: This is the sink rate gain for the pitch demand loop when in final landing stage of flight. It should be larger than TECS_PTCH_DAMP to allow for better sink rate control during flare. // @Range: 0.1 1.0 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("LAND_DAMP", 19, AP_TECS, _landDamp, 0.5f), // @Param: LAND_PMAX // @DisplayName: Maximum pitch during final stage of landing // @Description: This limits the pitch used during the final stage of automatic landing. During the final landing stage most planes need to keep their pitch small to avoid stalling. A maximum of 10 degrees is usually good. A value of zero means to use the normal pitch limits. // @Range: -5 40 // @Increment: 1 // @User: Advanced AP_GROUPINFO("LAND_PMAX", 20, AP_TECS, _land_pitch_max, 10), // @Param: APPR_SMAX // @DisplayName: Sink rate max for landing approach stage // @Description: The sink rate max for the landing approach stage of landing. This will need to be large for steep landing approaches especially when using reverse thrust. If 0, then use TECS_SINK_MAX. // @Range: 0.0 20.0 // @Units: m/s // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("APPR_SMAX", 21, AP_TECS, _maxSinkRate_approach, 0), // @Param: LAND_SRC // @DisplayName: Land sink rate change // @Description: When zero, the flare sink rate (TECS_LAND_SINK) is a fixed sink demand. With this enabled the flare sinkrate will increase/decrease the flare sink demand as you get further beyond the LAND waypoint. Has no effect before the waypoint. This value is added to TECS_LAND_SINK proportional to distance traveled after wp. With an increasing sink rate you can still land in a given distance if you're traveling too fast and cruise passed the land point. A positive value will force the plane to land sooner proportional to distance passed land point. A negative number will tell the plane to slowly climb allowing for a pitched-up stall landing. Recommend 0.2 as initial value. // @Range: -2.0 2.0 // @Units: m/s/m // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("LAND_SRC", 22, AP_TECS, _land_sink_rate_change, 0), // @Param: LAND_TDAMP // @DisplayName: Controller throttle damping when landing // @Description: Damping gain for the throttle demand loop during an auto-landing. Same as TECS_THR_DAMP but only in effect during an auto-land. Increase to add throttle activity to dampen oscillations in speed and height. When set to 0 landing throttle damping is controlled by TECS_THR_DAMP. // @Range: 0.1 1.0 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("LAND_TDAMP", 23, AP_TECS, _land_throttle_damp, 0), // @Param: LAND_IGAIN // @DisplayName: Controller integrator during landing // @Description: This is the integrator gain on the control loop during landing. When set to 0 then TECS_INTEG_GAIN is used. Increase to increase the rate at which speed and height offsets are trimmed out. Typically values lower than TECS_INTEG_GAIN work best // @Range: 0.0 0.5 // @Increment: 0.02 // @User: Advanced AP_GROUPINFO("LAND_IGAIN", 24, AP_TECS, _integGain_land, 0), // @Param: TKOFF_IGAIN // @DisplayName: Controller integrator during takeoff // @Description: This is the integrator gain on the control loop during takeoff. When set to 0 then TECS_INTEG_GAIN is used. Increase to increase the rate at which speed and height offsets are trimmed out. Typically values higher than TECS_INTEG_GAIN work best // @Range: 0.0 0.5 // @Increment: 0.02 // @User: Advanced AP_GROUPINFO("TKOFF_IGAIN", 25, AP_TECS, _integGain_takeoff, 0), // @Param: LAND_PDAMP // @DisplayName: Pitch damping gain when landing // @Description: This is the damping gain for the pitch demand loop during landing. Increase to add damping to correct for oscillations in speed and height. If set to 0 then TECS_PTCH_DAMP will be used instead. // @Range: 0.1 1.0 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("LAND_PDAMP", 26, AP_TECS, _land_pitch_damp, 0), // @Param: SYNAIRSPEED // @DisplayName: Enable the use of synthetic airspeed // @Description: This enable the use of synthetic airspeed for aircraft that don't have a real airspeed sensor. This is useful for development testing where the user is aware of the considerable limitations of the synthetic airspeed system, such as very poor estimates when a wind estimate is not accurate. Do not enable this option unless you fully understand the limitations of a synthetic airspeed estimate. // @Values: 0:Disable,1:Enable // @User: Advanced AP_GROUPINFO("SYNAIRSPEED", 27, AP_TECS, _use_synthetic_airspeed, 0), // @Param: OPTIONS // @DisplayName: Extra TECS options // @Description: This allows the enabling of special features in the speed/height controller. // @Bitmask: 0:GliderOnly // @User: Advanced AP_GROUPINFO("OPTIONS", 28, AP_TECS, _options, 0), // @Param: PTCH_FF_V0 // @DisplayName: Baseline airspeed for pitch feed-forward. // @Description: This parameter sets the airspeed at which no feed-forward is applied between demanded airspeed and pitch. It should correspond to the airspeed in metres per second at which the plane glides at neutral pitch including STAB_PITCH_DOWN. // @Range: 5.0 50.0 // @User: Advanced AP_GROUPINFO("PTCH_FF_V0", 29, AP_TECS, _pitch_ff_v0, 12.0), // @Param: PTCH_FF_K // @DisplayName: Gain for pitch feed-forward. // @Description: This parameter sets the gain between demanded airspeed and pitch. It has units of radians per metre per second and should generally be negative. A good starting value is -0.04 for gliders and -0.08 for draggy airframes. The default (0.0) disables this feed-forward. // @Range: -5.0 0.0 // @User: Advanced AP_GROUPINFO("PTCH_FF_K", 30, AP_TECS, _pitch_ff_k, 0.0), // 31 previously used by TECS_LAND_PTRIM // @Param: FLARE_HGT // @DisplayName: Flare holdoff height // @Description: When height above ground is below this, the sink rate will be held at TECS_LAND_SINK. Use this to perform a hold-of manoeuvre when combined with small values for TECS_LAND_SINK. // @Range: -10 15 // @Units: deg // @Increment: 1 // @User: Advanced AP_GROUPINFO("FLARE_HGT", 32, AP_TECS, _flare_holdoff_hgt, 1.0f), // @Param: HDEM_TCONST // @DisplayName: Height Demand Time Constant // @Description: This sets the time constant of the low pass filter that is applied to the height demand input when bit 1 of TECS_OPTIONS is not selected. // @Range: 1.0 5.0 // @Units: s // @Increment: 0.2 // @User: Advanced AP_GROUPINFO("HDEM_TCONST", 33, AP_TECS, _hgt_dem_tconst, 3.0f), AP_GROUPEND }; /* * Written by Paul Riseborough 2013 to provide: * - Combined control of speed and height using throttle to control * total energy and pitch angle to control exchange of energy between * potential and kinetic. * Selectable speed or height priority modes when calculating pitch angle * - Fallback mode when no airspeed measurement is available that * sets throttle based on height rate demand and switches pitch angle control to * height priority * - Underspeed protection that demands maximum throttle and switches pitch angle control * to speed priority mode * - Relative ease of tuning through use of intuitive time constant, integrator and damping gains and the use * of easy to measure aircraft performance data * */ void AP_TECS::update_50hz(void) { // Implement third order complementary filter for height and height rate // estimated height rate = _climb_rate // estimated height above field elevation = _height // Reference Paper : // Optimizing the Gains of the Baro-Inertial Vertical Channel // Widnall W.S, Sinha P.K, // AIAA Journal of Guidance and Control, 78-1307R /* if we have a vertical position estimate from the EKF then use it, otherwise use barometric altitude */ _ahrs.get_relative_position_D_home(_height); _height *= -1.0f; // Calculate time in seconds since last update uint64_t now = AP_HAL::micros64(); float DT = (now - _update_50hz_last_usec) * 1.0e-6f; _flags.reset = DT > 1.0f; if (_flags.reset) { _climb_rate = 0.0f; _height_filter.dd_height = 0.0f; DT = 0.02f; // when first starting TECS, use most likely time constant _vdot_filter.reset(); _takeoff_start_ms = 0; } _update_50hz_last_usec = now; // Use inertial nav verical velocity and height if available Vector3f velned; if (_ahrs.get_velocity_NED(velned)) { // if possible use the EKF vertical velocity _climb_rate = -velned.z; } else { /* use a complimentary filter to calculate climb_rate. This is designed to minimise lag */ const float baro_alt = AP::baro().get_altitude(); // Get height acceleration float hgt_ddot_mea = -(_ahrs.get_accel_ef().z + GRAVITY_MSS); // Perform filter calculation using backwards Euler integration // Coefficients selected to place all three filter poles at omega float omega2 = _hgtCompFiltOmega*_hgtCompFiltOmega; float hgt_err = baro_alt - _height_filter.height; float integ1_input = hgt_err * omega2 * _hgtCompFiltOmega; _height_filter.dd_height += integ1_input * DT; float integ2_input = _height_filter.dd_height + hgt_ddot_mea + hgt_err * omega2 * 3.0f; _climb_rate += integ2_input * DT; float integ3_input = _climb_rate + hgt_err * _hgtCompFiltOmega * 3.0f; // If more than 1 second has elapsed since last update then reset the integrator state // to the measured height if (_flags.reset) { _height_filter.height = _height; } else { _height_filter.height += integ3_input*DT; } } // Update the speed estimate using a 2nd order complementary filter _update_speed(DT); } void AP_TECS::_update_speed(float DT) { // Update and average speed rate of change // calculate a low pass filtered _vel_dot if (_flags.reset) { _vdot_filter.reset(); _vel_dot_lpf = _vel_dot; } else { // Get DCM const Matrix3f &rotMat = _ahrs.get_rotation_body_to_ned(); // Calculate speed rate of change float temp = rotMat.c.x * GRAVITY_MSS + AP::ins().get_accel().x; // take 5 point moving average _vel_dot = _vdot_filter.apply(temp); const float alpha = DT / (DT + timeConstant()); _vel_dot_lpf = _vel_dot_lpf * (1.0f - alpha) + _vel_dot * alpha; } bool use_airspeed = _use_synthetic_airspeed_once || _use_synthetic_airspeed.get() || _ahrs.airspeed_sensor_enabled(); // Convert equivalent airspeeds to true airspeeds and harmonise limits float EAS2TAS = _ahrs.get_EAS2TAS(); _TAS_dem = _EAS_dem * EAS2TAS; if (_flags.reset || !use_airspeed) { _TASmax = aparm.airspeed_max * EAS2TAS; } else if (_thr_clip_status == clipStatus::MAX) { // wind down airspeed upper limit to prevent a situation where the aircraft can't climb // at the maximum speed const float velRateMin = 0.5f * _STEdot_min / MAX(_TAS_state, aparm.airspeed_min * EAS2TAS); _TASmax += _DT * velRateMin; _TASmax = MAX(_TASmax, 0.01f * (float)aparm.airspeed_cruise_cm * EAS2TAS); } else { // wind airspeed upper limit back to parameter defined value const float velRateMax = 0.5f * _STEdot_max / MAX(_TAS_state, aparm.airspeed_min * EAS2TAS); _TASmax += _DT * velRateMax; } _TASmax = MIN(_TASmax, aparm.airspeed_max * EAS2TAS); _TASmin = aparm.airspeed_min * EAS2TAS; if (aparm.stall_prevention) { // when stall prevention is active we raise the minimum // airspeed based on aerodynamic load factor _TASmin *= _load_factor; } if (_TASmax < _TASmin) { _TASmax = _TASmin; } // Get measured airspeed or default to trim speed and constrain to range between min and max if // airspeed sensor data cannot be used if (!use_airspeed || !_ahrs.airspeed_estimate(_EAS)) { // If no airspeed available use average of min and max _EAS = constrain_float(0.01f * (float)aparm.airspeed_cruise_cm.get(), (float)aparm.airspeed_min.get(), (float)aparm.airspeed_max.get()); } // limit the airspeed to a minimum of 3 m/s const float min_airspeed = 3.0; // Reset states of time since last update is too large if (_flags.reset) { _TAS_state = (_EAS * EAS2TAS); _TAS_state = MAX(_TAS_state, min_airspeed); _integDTAS_state = 0.0f; return; } // Implement a second order complementary filter to obtain a // smoothed airspeed estimate // airspeed estimate is held in _TAS_state float aspdErr = (_EAS * EAS2TAS) - _TAS_state; float integDTAS_input = aspdErr * _spdCompFiltOmega * _spdCompFiltOmega; // Prevent state from winding up if (_TAS_state < 3.1f) { integDTAS_input = MAX(integDTAS_input, 0.0f); } _integDTAS_state = _integDTAS_state + integDTAS_input * DT; float TAS_input = _integDTAS_state + _vel_dot + aspdErr * _spdCompFiltOmega * 1.4142f; _TAS_state = _TAS_state + TAS_input * DT; _TAS_state = MAX(_TAS_state, min_airspeed); } void AP_TECS::_update_speed_demand(void) { // Set the airspeed demand to the minimum value if an underspeed condition exists // or a bad descent condition exists // This will minimise the rate of descent resulting from an engine failure, // enable the maximum climb rate to be achieved and prevent continued full power descent // into the ground due to an unachievable airspeed value if ((_flags.badDescent) || (_flags.underspeed)) { _TAS_dem = _TASmin; } // Constrain speed demand, taking into account the load factor _TAS_dem = constrain_float(_TAS_dem, _TASmin, _TASmax); // calculate velocity rate limits based on physical performance limits // provision to use a different rate limit if bad descent or underspeed condition exists // Use 50% of maximum energy rate to allow margin for total energy contgroller const float velRateMax = 0.5f * _STEdot_max / _TAS_state; const float velRateMin = 0.5f * _STEdot_min / _TAS_state; const float TAS_dem_previous = _TAS_dem_adj; // Apply rate limit if ((_TAS_dem - TAS_dem_previous) > (velRateMax * _DT)) { _TAS_dem_adj = TAS_dem_previous + velRateMax * _DT; _TAS_rate_dem = velRateMax; } else if ((_TAS_dem - TAS_dem_previous) < (velRateMin * _DT)) { _TAS_dem_adj = TAS_dem_previous + velRateMin * _DT; _TAS_rate_dem = velRateMin; } else { _TAS_rate_dem = (_TAS_dem - TAS_dem_previous) / _DT; _TAS_dem_adj = _TAS_dem; } // calculate a low pass filtered _TAS_rate_dem if (_flags.reset) { _TAS_dem_adj = _TAS_state; _TAS_rate_dem_lpf = _TAS_rate_dem; } else { const float alpha = _DT / (_DT + timeConstant()); _TAS_rate_dem_lpf = _TAS_rate_dem_lpf * (1.0f - alpha) + _TAS_rate_dem * alpha; } // Constrain speed demand again to protect against bad values on initialisation. _TAS_dem_adj = constrain_float(_TAS_dem_adj, _TASmin, _TASmax); } void AP_TECS::_update_height_demand(void) { _climb_rate_limit = _maxClimbRate * _max_climb_scaler; _sink_rate_limit = _maxSinkRate * _max_sink_scaler; if (_maxSinkRate_approach > 0 && _flags.is_doing_auto_land) { // special sink rate for approach to accommodate steep slopes and reverse thrust. // A special check must be done to see if we're LANDing on approach but also if // we're in that tiny window just starting NAV_LAND but still in NORMAL mode. If // we have a steep slope with a short approach we'll want to allow acquiring the // glide slope right away. _sink_rate_limit = _maxSinkRate_approach; } if (!_landing.is_flaring()) { // Apply 2 point moving average to demanded height const float hgt_dem = 0.5f * (_hgt_dem_in + _hgt_dem_in_prev); _hgt_dem_in_prev = _hgt_dem_in; // Limit height rate of change if ((hgt_dem - _hgt_dem_rate_ltd) > (_climb_rate_limit * _DT)) { _hgt_dem_rate_ltd = _hgt_dem_rate_ltd + _climb_rate_limit * _DT; } else if ((hgt_dem - _hgt_dem_rate_ltd) < (-_sink_rate_limit * _DT)) { _hgt_dem_rate_ltd = _hgt_dem_rate_ltd - _sink_rate_limit * _DT; } else { _hgt_dem_rate_ltd = hgt_dem; } // Apply a first order lag to height demand and compensate for lag when commencing height // control after takeoff to prevent plane pushing nose to level before climbing again. Post takeoff // compensation offset is decayed using the same time constant as the height demand filter. const float coef = MIN(_DT / (_DT + MAX(_hgt_dem_tconst, _DT)), 1.0f); _hgt_rate_dem = (_hgt_dem_rate_ltd - _hgt_dem_lpf) / _hgt_dem_tconst; _hgt_dem_lpf = _hgt_dem_rate_ltd * coef + (1.0f - coef) * _hgt_dem_lpf; _post_TO_hgt_offset *= (1.0f - coef); _hgt_dem = _hgt_dem_lpf + _post_TO_hgt_offset; // during approach compensate for height filter lag if (_flags.is_doing_auto_land) { _hgt_dem += _hgt_dem_tconst * _hgt_rate_dem; } else { // Don't allow height demand to get too far ahead of the vehicles current height // if vehicle is unable to follow the demanded climb or descent bool max_climb_condition = (_pitch_dem_unc > _PITCHmaxf) || (_SEBdot_dem_clip == clipStatus::MAX); bool max_descent_condition = (_pitch_dem_unc < _PITCHminf) || (_SEBdot_dem_clip == clipStatus::MIN); if (_using_airspeed_for_throttle) { // large height errors will result in the throttle saturating max_climb_condition |= (_thr_clip_status == clipStatus::MAX) && !((_flight_stage == AP_FixedWing::FlightStage::TAKEOFF) || (_flight_stage == AP_FixedWing::FlightStage::ABORT_LANDING)); max_descent_condition |= (_thr_clip_status == clipStatus::MIN) && !_landing.is_flaring(); } const float hgt_dem_alpha = _DT / MAX(_DT + _hgt_dem_tconst, _DT); if (max_climb_condition && _hgt_dem > _hgt_dem_prev) { _max_climb_scaler *= (1.0f - hgt_dem_alpha); } else if (max_descent_condition && _hgt_dem < _hgt_dem_prev) { _max_sink_scaler *= (1.0f - hgt_dem_alpha); } else { _max_climb_scaler = _max_climb_scaler * (1.0f - hgt_dem_alpha) + hgt_dem_alpha; _max_sink_scaler = _max_sink_scaler * (1.0f - hgt_dem_alpha) + hgt_dem_alpha; } } _hgt_dem_prev = _hgt_dem; } else { // when flaring force height rate demand to the // configured sink rate and adjust the demanded height to // be kinematically consistent with the height rate. // set all height filter states to current height to prevent large pitch transients if flare is aborted _hgt_dem_lpf = _height; _hgt_dem_rate_ltd = _height; _hgt_dem_in_prev = _height; if (!_flare_initialised) { _flare_hgt_dem_adj = _hgt_dem; _flare_hgt_dem_ideal = _hgt_afe; _hgt_at_start_of_flare = _hgt_afe; _hgt_rate_at_flare_entry = _climb_rate; _flare_initialised = true; } // adjust the flare sink rate to increase/decrease as your travel further beyond the land wp float land_sink_rate_adj = _land_sink + _land_sink_rate_change*_distance_beyond_land_wp; // bring it in linearly with height float p; if (_hgt_at_start_of_flare > _flare_holdoff_hgt) { p = constrain_float((_hgt_at_start_of_flare - _hgt_afe) / (_hgt_at_start_of_flare - _flare_holdoff_hgt), 0.0f, 1.0f); } else { p = 1.0f; } _hgt_rate_dem = _hgt_rate_at_flare_entry * (1.0f - p) - land_sink_rate_adj * p; _flare_hgt_dem_ideal += _DT * _hgt_rate_dem; // the ideal height profile to follow _flare_hgt_dem_adj += _DT * _hgt_rate_dem; // the demanded height profile that includes the pre-flare height tracking offset // fade across to the ideal height profile _hgt_dem = _flare_hgt_dem_adj * (1.0f - p) + _flare_hgt_dem_ideal * p; // correct for offset between height above ground and height above datum used by control loops _hgt_dem += (_hgt_afe - _height); } } void AP_TECS::_detect_underspeed(void) { // see if we can clear a previous underspeed condition. We clear // it if we are now more than 15% above min speed, and haven't // been below min speed for at least 3 seconds. if (_flags.underspeed && _TAS_state >= _TASmin * 1.15f && AP_HAL::millis() - _underspeed_start_ms > 3000U) { _flags.underspeed = false; } if (_flight_stage == AP_FixedWing::FlightStage::VTOL) { _flags.underspeed = false; } else if (((_TAS_state < _TASmin * 0.9f) && (_throttle_dem >= _THRmaxf * 0.95f) && !_landing.is_flaring()) || ((_height < _hgt_dem) && _flags.underspeed)) { _flags.underspeed = true; if (_TAS_state < _TASmin * 0.9f) { // reset start time as we are still underspeed _underspeed_start_ms = AP_HAL::millis(); } } else { // this clears underspeed if we reach our demanded height and // we are either below 95% throttle or we above 90% of min // airspeed _flags.underspeed = false; } } void AP_TECS::_update_energies(void) { // Calculate specific energy demands _SPE_dem = _hgt_dem * GRAVITY_MSS; _SKE_dem = 0.5f * _TAS_dem_adj * _TAS_dem_adj; // Calculate specific energy rate demands and high pass filter demanded airspeed // rate of change to match the filtering applied to the measurement _SKEdot_dem = _TAS_state * (_TAS_rate_dem - _TAS_rate_dem_lpf); // Calculate specific energy _SPE_est = _height * GRAVITY_MSS; _SKE_est = 0.5f * _TAS_state * _TAS_state; // Calculate specific energy rate and high pass filter airspeed rate of change // to remove effect of complementary filter induced bias errors _SPEdot = _climb_rate * GRAVITY_MSS; _SKEdot = _TAS_state * (_vel_dot - _vel_dot_lpf); } /* current time constant. It is lower in landing to try to give a precise approach */ float AP_TECS::timeConstant(void) const { if (_flags.is_doing_auto_land) { if (_landTimeConst < 0.1f) { return 0.1f; } return _landTimeConst; } if (_timeConst < 0.1f) { return 0.1f; } return _timeConst; } /* calculate throttle demand - airspeed enabled case */ void AP_TECS::_update_throttle_with_airspeed(void) { // Calculate limits to be applied to potential energy error to prevent over or underspeed occurring due to large height errors float SPE_err_max = MAX(_SKE_est - 0.5f * _TASmin * _TASmin, 0.0f); float SPE_err_min = MIN(_SKE_est - 0.5f * _TASmax * _TASmax, 0.0f); if (_flight_stage == AP_FixedWing::FlightStage::VTOL) { /* when we are in a VTOL state then we ignore potential energy errors as we have vertical motors that interfere with the total energy calculation. */ SPE_err_max = SPE_err_min = 0; } // rate of change of potential energy is proportional to height error _SPEdot_dem = (_SPE_dem - _SPE_est) / timeConstant(); // Calculate total energy error _STE_error = constrain_float((_SPE_dem - _SPE_est), SPE_err_min, SPE_err_max) + _SKE_dem - _SKE_est; float STEdot_dem = constrain_float((_SPEdot_dem + _SKEdot_dem), _STEdot_min, _STEdot_max); float STEdot_error = STEdot_dem - _SPEdot - _SKEdot; // Apply 0.5 second first order filter to STEdot_error // This is required to remove accelerometer noise from the measurement const float filt_coef = 2.0f * _DT; STEdot_error = filt_coef * STEdot_error + (1.0f - filt_coef) * _STEdotErrLast; _STEdotErrLast = STEdot_error; // Calculate throttle demand // If underspeed condition is set, then demand full throttle if (_flags.underspeed) { _throttle_dem = 1.0f; } else if (_flags.is_gliding) { _throttle_dem = 0.0f; } else { // Calculate gain scaler from specific energy error to throttle // (_STEdot_max - _STEdot_min) / (_THRmaxf - _THRminf) is the derivative of STEdot wrt throttle measured across the max allowed throttle range. const float K_STE2Thr = 1 / (timeConstant() * (_STEdot_max - _STEdot_min) / (_THRmaxf - _THRminf)); // Calculate feed-forward throttle const float nomThr = aparm.throttle_cruise * 0.01f; const Matrix3f &rotMat = _ahrs.get_rotation_body_to_ned(); // Use the demanded rate of change of total energy as the feed-forward demand, but add // additional component which scales with (1/cos(bank angle) - 1) to compensate for induced // drag increase during turns. const float cosPhi = sqrtf((rotMat.a.y*rotMat.a.y) + (rotMat.b.y*rotMat.b.y)); STEdot_dem = STEdot_dem + _rollComp * (1.0f/constrain_float(cosPhi * cosPhi, 0.1f, 1.0f) - 1.0f); const float ff_throttle = nomThr + STEdot_dem / (_STEdot_max - _STEdot_min) * (_THRmaxf - _THRminf); // Calculate PD + FF throttle float throttle_damp = _thrDamp; if (_flags.is_doing_auto_land && !is_zero(_land_throttle_damp)) { throttle_damp = _land_throttle_damp; } _throttle_dem = (_STE_error + STEdot_error * throttle_damp) * K_STE2Thr + ff_throttle; float THRminf_clipped_to_zero = constrain_float(_THRminf, 0, _THRmaxf); // Calculate integrator state upper and lower limits // Set to a value that will allow 0.1 (10%) throttle saturation to allow for noise on the demand // Additionally constrain the integrator state amplitude so that the integrator comes off limits faster. const float maxAmp = 0.5f*(_THRmaxf - THRminf_clipped_to_zero); const float integ_max = constrain_float((_THRmaxf - _throttle_dem + 0.1f),-maxAmp,maxAmp); const float integ_min = constrain_float((_THRminf - _throttle_dem - 0.1f),-maxAmp,maxAmp); // Calculate integrator state, constraining state // Set integrator to a max throttle value during climbout _integTHR_state = _integTHR_state + (_STE_error * _get_i_gain()) * _DT * K_STE2Thr; if (_flight_stage == AP_FixedWing::FlightStage::TAKEOFF || _flight_stage == AP_FixedWing::FlightStage::ABORT_LANDING) { if (!_flags.reached_speed_takeoff) { // ensure we run at full throttle until we reach the target airspeed _throttle_dem = MAX(_throttle_dem, _THRmaxf - _integTHR_state); } _integTHR_state = integ_max; } else { _integTHR_state = constrain_float(_integTHR_state, integ_min, integ_max); } // Rate limit PD + FF throttle // Calculate the throttle increment from the specified slew time int8_t throttle_slewrate = aparm.throttle_slewrate; if (_landing.is_on_approach()) { const int8_t land_slewrate = _landing.get_throttle_slewrate(); if (land_slewrate > 0) { throttle_slewrate = land_slewrate; } } if (throttle_slewrate != 0) { const float thrRateIncr = _DT * (_THRmaxf - THRminf_clipped_to_zero) * throttle_slewrate * 0.01f; _throttle_dem = constrain_float(_throttle_dem, _last_throttle_dem - thrRateIncr, _last_throttle_dem + thrRateIncr); _last_throttle_dem = _throttle_dem; } // Sum the components. _throttle_dem = _throttle_dem + _integTHR_state; if (AP::logger().should_log(_log_bitmask)){ AP::logger().WriteStreaming("TEC3","TimeUS,KED,PED,KEDD,PEDD,TEE,TEDE,FFT,Imin,Imax,I,Emin,Emax", "Qffffffffffff", AP_HAL::micros64(), (double)_SKEdot, (double)_SPEdot, (double)_SKEdot_dem, (double)_SPEdot_dem, (double)_STE_error, (double)STEdot_error, (double)ff_throttle, (double)integ_min, (double)integ_max, (double)_integTHR_state, (double)SPE_err_min, (double)SPE_err_max); } } // Constrain throttle demand and record clipping if (_throttle_dem > _THRmaxf) { _thr_clip_status = clipStatus::MAX; _throttle_dem = _THRmaxf; } else if (_throttle_dem < _THRminf) { _thr_clip_status = clipStatus::MIN; _throttle_dem = _THRminf; } else { _thr_clip_status = clipStatus::NONE; } } float AP_TECS::_get_i_gain(void) { float i_gain = _integGain; if (_flight_stage == AP_FixedWing::FlightStage::TAKEOFF || _flight_stage == AP_FixedWing::FlightStage::ABORT_LANDING) { if (!is_zero(_integGain_takeoff)) { i_gain = _integGain_takeoff; } } else if (_flags.is_doing_auto_land) { if (!is_zero(_integGain_land)) { i_gain = _integGain_land; } } return i_gain; } /* calculate throttle, non-airspeed case */ void AP_TECS::_update_throttle_without_airspeed(int16_t throttle_nudge) { // Calculate throttle demand by interpolating between pitch and throttle limits float nomThr; //If landing and we don't have an airspeed sensor and we have a non-zero //TECS_LAND_THR param then use it if (_flags.is_doing_auto_land && _landThrottle >= 0) { nomThr = (_landThrottle + throttle_nudge) * 0.01f; } else { //not landing or not using TECS_LAND_THR parameter nomThr = (aparm.throttle_cruise + throttle_nudge)* 0.01f; } // Use a pitch angle that is the sum of a highpassed _pitch_dem and a lowpassed ahrs pitch // so that the throttle mapping adjusts for the effect of pitch control errors _pitch_demand_lpf.apply(_pitch_dem, _DT); const float pitch_demand_hpf = _pitch_dem - _pitch_demand_lpf.get(); _pitch_measured_lpf.apply(_ahrs.pitch, _DT); const float pitch_corrected_lpf = _pitch_measured_lpf.get() - radians(0.01f * (float)aparm.pitch_trim_cd); const float pitch_blended = pitch_demand_hpf + pitch_corrected_lpf; if (pitch_blended > 0.0f && _PITCHmaxf > 0.0f) { _throttle_dem = nomThr + (_THRmaxf - nomThr) * pitch_blended / _PITCHmaxf; } else if (pitch_blended < 0.0f && _PITCHminf < 0.0f) { _throttle_dem = nomThr + (_THRminf - nomThr) * pitch_blended / _PITCHminf; } else { _throttle_dem = nomThr; } if (_flight_stage == AP_FixedWing::FlightStage::TAKEOFF) { const uint32_t now = AP_HAL::millis(); if (_takeoff_start_ms == 0) { _takeoff_start_ms = now; } const uint32_t dt = now - _takeoff_start_ms; if (dt*0.001 < aparm.takeoff_throttle_max_t) { _throttle_dem = _THRmaxf; } } else { _takeoff_start_ms = 0; } if (_flags.is_gliding) { _throttle_dem = 0.0f; return; } // Calculate additional throttle for turn drag compensation including throttle nudging const Matrix3f &rotMat = _ahrs.get_rotation_body_to_ned(); // Use the demanded rate of change of total energy as the feed-forward demand, but add // additional component which scales with (1/cos(bank angle) - 1) to compensate for induced // drag increase during turns. float cosPhi = sqrtf((rotMat.a.y*rotMat.a.y) + (rotMat.b.y*rotMat.b.y)); float STEdot_dem = _rollComp * (1.0f/constrain_float(cosPhi * cosPhi, 0.1f, 1.0f) - 1.0f); _throttle_dem = _throttle_dem + STEdot_dem / (_STEdot_max - _STEdot_min) * (_THRmaxf - _THRminf); } void AP_TECS::_detect_bad_descent(void) { // Detect a demanded airspeed too high for the aircraft to achieve. This will be // evident by the following conditions: // 1) Underspeed protection not active // 2) Specific total energy error > 200 (greater than ~20m height error) // 3) Specific total energy reducing // 4) throttle demand > 90% // If these four conditions exist simultaneously, then the protection // mode will be activated. // Once active, the following condition are required to stay in the mode // 1) Underspeed protection not active // 2) Specific total energy error > 0 // This mode will produce an undulating speed and height response as it cuts in and out but will prevent the aircraft from descending into the ground if an unachievable speed demand is set float STEdot = _SPEdot + _SKEdot; if (((!_flags.underspeed && (_STE_error > 200.0f) && (STEdot < 0.0f) && (_throttle_dem >= _THRmaxf * 0.9f)) || (_flags.badDescent && !_flags.underspeed && (_STE_error > 0.0f))) && !_flags.is_gliding) { _flags.badDescent = true; } else { _flags.badDescent = false; } } void AP_TECS::_update_pitch(void) { // Calculate Speed/Height Control Weighting // This is used to determine how the pitch control prioritises speed and height control // A weighting of 1 provides equal priority (this is the normal mode of operation) // A SKE_weighting of 0 provides 100% priority to height control. This is used when no airspeed measurement is available // A SKE_weighting of 2 provides 100% priority to speed control. This is used when an underspeed condition is detected. In this instance, if airspeed // rises above the demanded value, the pitch angle will be increased by the TECS controller. _SKE_weighting = constrain_float(_spdWeight, 0.0f, 2.0f); if (!(_ahrs.airspeed_sensor_enabled() || _use_synthetic_airspeed)) { _SKE_weighting = 0.0f; } else if (_flight_stage == AP_FixedWing::FlightStage::VTOL) { // if we are in VTOL mode then control pitch without regard to // speed. Speed is also taken care of independently of // height. This is needed as the usual relationship of speed // and height is broken by the VTOL motors _SKE_weighting = 0.0f; } else if ( _flags.underspeed || _flight_stage == AP_FixedWing::FlightStage::TAKEOFF || _flight_stage == AP_FixedWing::FlightStage::ABORT_LANDING || _flags.is_gliding) { _SKE_weighting = 2.0f; } else if (_flags.is_doing_auto_land) { if (_spdWeightLand < 0) { // use sliding scale from normal weight down to zero at landing float scaled_weight = _spdWeight * (1.0f - constrain_float(_path_proportion,0,1)); _SKE_weighting = constrain_float(scaled_weight, 0.0f, 2.0f); } else { _SKE_weighting = constrain_float(_spdWeightLand, 0.0f, 2.0f); } } float SPE_weighting = 2.0f - _SKE_weighting; // either weight can fade to 0, but don't go above 1 to prevent instability if tuned at a speed weight of 1 and wieghting is varied to end points in flight. SPE_weighting = MIN(SPE_weighting, 1.0f); _SKE_weighting = MIN(_SKE_weighting, 1.0f); // Calculate demanded specific energy balance and error float SEB_dem = _SPE_dem * SPE_weighting - _SKE_dem * _SKE_weighting; float SEB_est = _SPE_est * SPE_weighting - _SKE_est * _SKE_weighting; float SEB_error = SEB_dem - SEB_est; // track demanded height using the specified time constant float SEBdot_dem = _hgt_rate_dem * GRAVITY_MSS * SPE_weighting + SEB_error / timeConstant(); const float SEBdot_dem_min = - _maxSinkRate * GRAVITY_MSS; const float SEBdot_dem_max = _maxClimbRate * GRAVITY_MSS; if (SEBdot_dem < SEBdot_dem_min) { SEBdot_dem = SEBdot_dem_min; _SEBdot_dem_clip = clipStatus::MIN; } else if (SEBdot_dem > SEBdot_dem_max) { SEBdot_dem = SEBdot_dem_max; _SEBdot_dem_clip = clipStatus::MAX; } else { _SEBdot_dem_clip = clipStatus::NONE; } // calculate specific energy balance rate error const float SEBdot_est = _SPEdot * SPE_weighting - _SKEdot * _SKE_weighting; float SEBdot_error = SEBdot_dem - SEBdot_est; // sum predicted plus damping correction // integral correction is added later // During flare a different damping gain is used float pitch_damp = _ptchDamp; if (_landing.is_flaring()) { pitch_damp = _landDamp; } else if (!is_zero(_land_pitch_damp) && _flags.is_doing_auto_land) { pitch_damp = _land_pitch_damp; } float SEBdot_dem_total = SEBdot_dem + SEBdot_error * pitch_damp; // inverse of gain from SEB to pitch angle float gainInv = (_TAS_state * GRAVITY_MSS); // During climbout/takeoff, bias the demanded pitch angle so that zero speed error produces a pitch angle // demand equal to the minimum value (which is )set by the mission plan during this mode). Otherwise the // integrator has to catch up before the nose can be raised to reduce speed during climbout. if (_flight_stage == AP_FixedWing::FlightStage::TAKEOFF || _flight_stage == AP_FixedWing::FlightStage::ABORT_LANDING) { SEBdot_dem_total += _PITCHminf * gainInv; } // don't allow the integrator to rise by more than 20% of its full // Calculate max and min values for integrator state that will allow for no more than // 5deg of saturation. This allows for some pitch variation due to gusts before the // integrator is clipped. Otherwise the effectiveness of the integrator will be reduced in turbulence float integSEBdot_min = (gainInv * (_PITCHminf - radians(5.0f))) - SEBdot_dem_total; float integSEBdot_max = (gainInv * (_PITCHmaxf + radians(5.0f))) - SEBdot_dem_total; // Calculate integrator state, constraining input if pitch limits are exceeded // don't allow the integrator to rise by more than 10% of its full // range in one step. This prevents single value glitches from // causing massive integrator changes. See Issue#4066 float integSEB_range = integSEBdot_max - integSEBdot_min; float integSEB_delta = constrain_float(SEBdot_error * _get_i_gain() * _DT, -integSEB_range*0.1f, integSEB_range*0.1f); // predict what pitch will be with uncontrained integration _pitch_dem_unc = (SEBdot_dem_total + _integSEBdot + integSEB_delta + _integKE) / gainInv; // integrate SEB rate error and apply integrator state limits const bool inhibit_integrator = ((_pitch_dem_unc > _PITCHmaxf) && integSEB_delta > 0.0f) || ((_pitch_dem_unc < _PITCHminf) && integSEB_delta < 0.0f); if (!inhibit_integrator) { _integSEBdot += integSEB_delta; _integKE += (_SKE_est - _SKE_dem) * _SKE_weighting * _DT / timeConstant(); } else { // fade out integrator if saturating const float coef = 1.0f - _DT / (_DT + timeConstant()); _integSEBdot *= coef; _integKE *= coef; } _integSEBdot = constrain_float(_integSEBdot, integSEBdot_min, integSEBdot_max); const float KE_integ_limit = 0.25f * (_PITCHmaxf - _PITCHminf) * gainInv; // allow speed trim integrator to access 505 of pitch range _integKE = constrain_float(_integKE, - KE_integ_limit, KE_integ_limit); // Calculate pitch demand from specific energy balance signals _pitch_dem_unc = (SEBdot_dem_total + _integSEBdot + _integKE) / gainInv; // Add a feedforward term from demanded airspeed to pitch if (_flags.is_gliding) { _pitch_dem_unc += (_TAS_dem_adj - _pitch_ff_v0) * _pitch_ff_k; } // Constrain pitch demand _pitch_dem = constrain_float(_pitch_dem_unc, _PITCHminf, _PITCHmaxf); // Rate limit the pitch demand to comply with specified vertical // acceleration limit float ptchRateIncr = _DT * _vertAccLim / _TAS_state; if ((_pitch_dem - _last_pitch_dem) > ptchRateIncr) { _pitch_dem = _last_pitch_dem + ptchRateIncr; } else if ((_pitch_dem - _last_pitch_dem) < -ptchRateIncr) { _pitch_dem = _last_pitch_dem - ptchRateIncr; } _last_pitch_dem = _pitch_dem; if (AP::logger().should_log(_log_bitmask)){ AP::logger().WriteStreaming("TEC2","TimeUS,PEW,EBD,EBE,EBDD,EBDE,EBDDT,Imin,Imax,I,KI,pmin,pmax", "Qffffffffffff", AP_HAL::micros64(), (double)SPE_weighting, (double)SEB_dem, (double)SEB_est, (double)SEBdot_dem, (double)SEBdot_est, (double)SEBdot_dem_total, (double)integSEBdot_min, (double)integSEBdot_max, (double)_integSEBdot, (double)_integKE, (double)_PITCHminf, (double)_PITCHmaxf); } } void AP_TECS::_initialise_states(int32_t ptchMinCO_cd, float hgt_afe) { _flags.reset = false; // Initialise states and variables if DT > 0.2 second or in climbout if (_DT > 0.2f || _need_reset) { _SKE_weighting = 1.0f; _integTHR_state = 0.0f; _integSEBdot = 0.0f; _integKE = 0.0f; _last_throttle_dem = aparm.throttle_cruise * 0.01f; _last_pitch_dem = _ahrs.pitch; _hgt_afe = hgt_afe; _hgt_dem_in_prev = hgt_afe; _hgt_dem_lpf = hgt_afe; _hgt_dem_rate_ltd = hgt_afe; _hgt_dem_prev = hgt_afe; _TAS_dem_adj = _TAS_dem; _flags.reset = true; _DT = 0.02f; // when first starting TECS, use the most likely time constant _lag_comp_hgt_offset = 0.0f; _post_TO_hgt_offset = 0.0f; _takeoff_start_ms = 0; _flags.underspeed = false; _flags.badDescent = false; _flags.reached_speed_takeoff = false; _need_reset = false; // misc variables used for alternative precision landing pitch control _hgt_at_start_of_flare = 0.0f; _hgt_rate_at_flare_entry = 0.0f; _hgt_afe = 0.0f; _pitch_min_at_flare_entry = 0.0f; _max_climb_scaler = 1.0f; _max_sink_scaler = 1.0f; const float fc = 1.0f / (M_2PI * _timeConst); _pitch_demand_lpf.set_cutoff_frequency(fc); _pitch_measured_lpf.set_cutoff_frequency(fc); _pitch_demand_lpf.reset(_ahrs.pitch); _pitch_measured_lpf.reset(_ahrs.pitch); } else if (_flight_stage == AP_FixedWing::FlightStage::TAKEOFF || _flight_stage == AP_FixedWing::FlightStage::ABORT_LANDING) { _PITCHminf = 0.000174533f * ptchMinCO_cd; _hgt_afe = hgt_afe; _hgt_dem_lpf = hgt_afe; _hgt_dem_rate_ltd = hgt_afe; _hgt_dem_prev = hgt_afe; _hgt_dem = hgt_afe; _hgt_dem_in_prev = hgt_afe; _hgt_dem_in_raw = hgt_afe; _TAS_dem_adj = _TAS_dem; _flags.reset = true; _post_TO_hgt_offset = _climb_rate * _hgt_dem_tconst; _flags.underspeed = false; _flags.badDescent = false; _max_climb_scaler = 1.0f; _max_sink_scaler = 1.0f; _pitch_demand_lpf.reset(_ahrs.pitch); _pitch_measured_lpf.reset(_ahrs.pitch); } if (_flight_stage != AP_FixedWing::FlightStage::TAKEOFF && _flight_stage != AP_FixedWing::FlightStage::ABORT_LANDING) { // reset takeoff speed flag when not in takeoff _flags.reached_speed_takeoff = false; } } void AP_TECS::_update_STE_rate_lim(void) { // Calculate Specific Total Energy Rate Limits // This is a trivial calculation at the moment but will get bigger once we start adding altitude effects _STEdot_max = _climb_rate_limit * GRAVITY_MSS; _STEdot_min = - _minSinkRate * GRAVITY_MSS; } void AP_TECS::update_pitch_throttle(int32_t hgt_dem_cm, int32_t EAS_dem_cm, enum AP_FixedWing::FlightStage flight_stage, float distance_beyond_land_wp, int32_t ptchMinCO_cd, int16_t throttle_nudge, float hgt_afe, float load_factor) { // Calculate time in seconds since last update uint64_t now = AP_HAL::micros64(); _DT = (now - _update_pitch_throttle_last_usec) * 1.0e-6f; _DT = MAX(_DT, 0.001f); _update_pitch_throttle_last_usec = now; _flags.is_gliding = _flags.gliding_requested || _flags.propulsion_failed || aparm.throttle_max==0; _flags.is_doing_auto_land = (flight_stage == AP_FixedWing::FlightStage::LAND); _distance_beyond_land_wp = distance_beyond_land_wp; _flight_stage = flight_stage; // Convert inputs _hgt_dem_in_raw = hgt_dem_cm * 0.01f; _EAS_dem = EAS_dem_cm * 0.01f; _hgt_afe = hgt_afe; _load_factor = load_factor; // Don't allow height deamnd to continue changing in a direction that saturates vehicle manoeuvre limits // if vehicle is unable to follow the demanded climb or descent. const bool max_climb_condition = (_pitch_dem_unc > _PITCHmaxf || _thr_clip_status == clipStatus::MAX) && !(_flight_stage == AP_FixedWing::FlightStage::TAKEOFF || _flight_stage == AP_FixedWing::FlightStage::ABORT_LANDING); const bool max_descent_condition = _pitch_dem_unc < _PITCHminf || _thr_clip_status == clipStatus::MIN; if (max_climb_condition && _hgt_dem_in_raw > _hgt_dem_in_prev) { _hgt_dem_in = _hgt_dem_in_prev; } else if (max_descent_condition && _hgt_dem_in_raw < _hgt_dem_in_prev) { _hgt_dem_in = _hgt_dem_in_prev; } else { _hgt_dem_in = _hgt_dem_in_raw; } if (aparm.takeoff_throttle_max != 0 && (_flight_stage == AP_FixedWing::FlightStage::TAKEOFF || _flight_stage == AP_FixedWing::FlightStage::ABORT_LANDING)) { _THRmaxf = aparm.takeoff_throttle_max * 0.01f; } else { _THRmaxf = aparm.throttle_max * 0.01f; } _THRminf = aparm.throttle_min * 0.01f; // min of 1% throttle range to prevent a numerical error _THRmaxf = MAX(_THRmaxf, _THRminf+0.01); // work out the maximum and minimum pitch // if TECS_PITCH_{MAX,MIN} isn't set then use // LIM_PITCH_{MAX,MIN}. Don't allow TECS_PITCH_{MAX,MIN} to be // larger than LIM_PITCH_{MAX,MIN} if (_pitch_max == 0) { _PITCHmaxf = aparm.pitch_limit_max_cd * 0.01f; } else { _PITCHmaxf = MIN(_pitch_max, aparm.pitch_limit_max_cd * 0.01f); } if (_pitch_min >= 0) { _PITCHminf = aparm.pitch_limit_min_cd * 0.01f; } else { _PITCHminf = MAX(_pitch_min, aparm.pitch_limit_min_cd * 0.01f); } // apply temporary pitch limit and clear if (_pitch_max_limit < 90) { _PITCHmaxf = constrain_float(_PITCHmaxf, -90, _pitch_max_limit); _PITCHminf = constrain_float(_PITCHminf, -_pitch_max_limit, _PITCHmaxf); _pitch_max_limit = 90; } if (!_landing.is_on_approach()) { // reset land pitch min when not landing _land_pitch_min = _PITCHminf; } // calculate the expected pitch angle from the demanded climb rate and airspeed fo ruse during approach and flare if (_landing.is_flaring()) { // smoothly move the min pitch to the required minimum at touchdown float p; // 0 at start of flare, 1 at finish if (!_flare_initialised) { p = 0.0f; } else if (_hgt_at_start_of_flare > _flare_holdoff_hgt) { p = constrain_float((_hgt_at_start_of_flare - _hgt_afe) / _hgt_at_start_of_flare, 0.0f, 1.0f); } else { p = 1.0f; } const float pitch_limit_deg = (1.0f - p) * _pitch_min_at_flare_entry + p * 0.01f * _landing.get_pitch_cd(); // in flare use min pitch from LAND_PITCH_CD _PITCHminf = MAX(_PITCHminf, pitch_limit_deg); // and use max pitch from TECS_LAND_PMAX if (_land_pitch_max != 0) { // note that this allows a flare pitch outside the normal TECS auto limits _PITCHmaxf = _land_pitch_max; } // and allow zero throttle _THRminf = 0; } else if (_landing.is_on_approach()) { _PITCHminf = MAX(_PITCHminf, 0.01f * aparm.pitch_limit_min_cd); _pitch_min_at_flare_entry = _PITCHminf; _flare_initialised = false; } else { _flare_initialised = false; } if (_landing.is_on_approach()) { // don't allow the lower bound of pitch to decrease, nor allow // it to increase rapidly. This prevents oscillation of pitch // demand while in landing approach based on rapidly changing // time to flare estimate if (_land_pitch_min <= -90) { _land_pitch_min = _PITCHminf; } const float flare_pitch_range = 20; const float delta_per_loop = (flare_pitch_range/_landTimeConst) * _DT; _PITCHminf = MIN(_PITCHminf, _land_pitch_min+delta_per_loop); _land_pitch_min = MAX(_land_pitch_min, _PITCHminf); _PITCHminf = MAX(_land_pitch_min, _PITCHminf); } if (flight_stage == AP_FixedWing::FlightStage::TAKEOFF || flight_stage == AP_FixedWing::FlightStage::ABORT_LANDING) { if (!_flags.reached_speed_takeoff && _TAS_state >= _TAS_dem_adj) { // we have reached our target speed in takeoff, allow for // normal throttle control _flags.reached_speed_takeoff = true; } } // convert to radians _PITCHmaxf = radians(_PITCHmaxf); _PITCHminf = radians(_PITCHminf); // don't allow max pitch to go below min pitch _PITCHmaxf = MAX(_PITCHmaxf, _PITCHminf); // initialise selected states and variables if DT > 1 second or in climbout _initialise_states(ptchMinCO_cd, hgt_afe); // Calculate Specific Total Energy Rate Limits _update_STE_rate_lim(); // Calculate the speed demand _update_speed_demand(); // Calculate the height demand _update_height_demand(); // Detect underspeed condition _detect_underspeed(); // Calculate specific energy quantitiues _update_energies(); // Calculate pitch demand _update_pitch(); // Calculate throttle demand - use simple pitch to throttle if no // airspeed sensor. // Note that caller can demand the use of // synthetic airspeed for one loop if needed. This is required // during QuadPlane transition when pitch is constrained if (_ahrs.airspeed_sensor_enabled() || _use_synthetic_airspeed || _use_synthetic_airspeed_once) { _update_throttle_with_airspeed(); _use_synthetic_airspeed_once = false; _using_airspeed_for_throttle = true; } else { _update_throttle_without_airspeed(throttle_nudge); _using_airspeed_for_throttle = false; } // Detect bad descent due to demanded airspeed being too high _detect_bad_descent(); if (_options & OPTION_GLIDER_ONLY) { _flags.badDescent = false; } if (AP::logger().should_log(_log_bitmask)){ // log to AP_Logger // @LoggerMessage: TECS // @Vehicles: Plane // @Description: Information about the Total Energy Control System // @URL: http://ardupilot.org/plane/docs/tecs-total-energy-control-system-for-speed-height-tuning-guide.html // @Field: TimeUS: Time since system startup // @Field: h: height estimate (UP) currently in use by TECS // @Field: dh: current climb rate ("delta-height") // @Field: hin: height demand received by TECS // @Field: hdem: height demand after rate limiting and filtering that TECS is currently trying to achieve // @Field: dhdem: climb rate TECS is currently trying to achieve // @Field: spdem: True AirSpeed TECS is currently trying to achieve // @Field: sp: current estimated True AirSpeed // @Field: dsp: x-axis acceleration estimate ("delta-speed") // @Field: th: throttle output // @Field: ph: pitch output // @Field: pmin: pitch lower limit // @Field: pmax: pitch upper limit // @Field: dspdem: demanded acceleration output ("delta-speed demand") // @Field: f: flags // @FieldBits: f: Underspeed,UnachievableDescent,AutoLanding,ReachedTakeoffSpd AP::logger().WriteStreaming("TECS", "TimeUS,h,dh,hin,hdem,dhdem,spdem,sp,dsp,th,ph,pmin,pmax,dspdem,f", "smnmmnnnn------", "F00000000------", "QfffffffffffffB", now, (double)_height, (double)_climb_rate, (double)_hgt_dem_in_raw, (double)_hgt_dem, (double)_hgt_rate_dem, (double)_TAS_dem_adj, (double)_TAS_state, (double)_vel_dot, (double)_throttle_dem, (double)_pitch_dem, (double)_PITCHminf, (double)_PITCHmaxf, (double)_TAS_rate_dem, _flags_byte); } }