#include "PerfInfo.h" #include #include extern const AP_HAL::HAL& hal; // // high level performance monitoring // // we measure the main loop time // // reset - reset all records of loop time to zero void AP::PerfInfo::reset() { loop_count = 0; max_time = 0; min_time = 0; long_running = 0; log_dropped = DataFlash_Class::instance()->num_dropped(); sigma_time = 0; sigmasquared_time = 0; } // ignore_loop - ignore this loop from performance measurements (used to reduce false positive when arming) void AP::PerfInfo::ignore_this_loop() { ignore_loop = true; } // check_loop_time - check latest loop time vs min, max and overtime threshold void AP::PerfInfo::check_loop_time(uint32_t time_in_micros) { loop_count++; // exit if this loop should be ignored if (ignore_loop) { ignore_loop = false; return; } if( time_in_micros > max_time) { max_time = time_in_micros; } if( min_time == 0 || time_in_micros < min_time) { min_time = time_in_micros; } if (time_in_micros > overtime_threshold_micros) { long_running++; } sigma_time += time_in_micros; sigmasquared_time += time_in_micros * time_in_micros; /* we keep a filtered loop time for use as G_Dt which is the predicted time for the next loop. We remove really excessive times from this calculation so as not to throw it off too far in case we get a single long loop Note that the time we use here is the time between calls to check_loop_time() not the time from loop start to loop end. This is because we are using the time for time between calls to controllers, which has nothing to do with cpu speed. */ const uint32_t now = AP_HAL::micros(); const uint32_t loop_time_us = now - last_check_us; last_check_us = now; if (loop_time_us < overtime_threshold_micros + 10000UL) { filtered_loop_time = 0.99f * filtered_loop_time + 0.01f * loop_time_us * 1.0e-6f; } } // get_num_loops: return number of loops used for recording performance uint16_t AP::PerfInfo::get_num_loops() const { return loop_count; } // get_max_time - return maximum loop time (in microseconds) uint32_t AP::PerfInfo::get_max_time() const { return max_time; } // get_min_time - return minumum loop time (in microseconds) uint32_t AP::PerfInfo::get_min_time() const { return min_time; } // get_num_long_running - get number of long running loops uint16_t AP::PerfInfo::get_num_long_running() const { return long_running; } // get_num_dropped - get number of dropped log messages uint32_t AP::PerfInfo::get_num_dropped() const { return log_dropped; } // get_avg_time - return average loop time (in microseconds) uint32_t AP::PerfInfo::get_avg_time() const { return (sigma_time / loop_count); } // get_stddev_time - return stddev of average loop time (in us) uint32_t AP::PerfInfo::get_stddev_time() const { return sqrtf((sigmasquared_time - (sigma_time*sigma_time)/loop_count) / loop_count); } // get_filtered_time - return low pass filtered loop time in seconds float AP::PerfInfo::get_filtered_time() const { return filtered_loop_time; } void AP::PerfInfo::update_logging() { gcs().send_text(MAV_SEVERITY_WARNING, "PERF: %u/%u max=%lu min=%lu F=%u sd=%lu", (unsigned)get_num_long_running(), (unsigned)get_num_loops(), (unsigned long)get_max_time(), (unsigned long)get_min_time(), (unsigned)(get_filtered_time()*1.0e6), (unsigned long)get_stddev_time()); } void AP::PerfInfo::set_loop_rate(uint16_t rate_hz) { // allow a 20% overrun before we consider a loop "slow": overtime_threshold_micros = 1000000/rate_hz * 1.2f; if (loop_rate_hz != rate_hz) { loop_rate_hz = rate_hz; filtered_loop_time = 1.0f / rate_hz; } }