/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * */ // This is a very simple 1-D rover model using libAP_JSON for C++ #include #include #include #include #include "libAP_JSON.cpp" #include "simpleRover.h" uint16_t servo_out[16]; uint64_t micros() { uint64_t us = std::chrono::duration_cast(std::chrono::high_resolution_clock:: now().time_since_epoch()).count(); return us; } bool simpleRover::update(simpleRover &rover, uint16_t servo_out[]) { // returns true is the update went well. false means something went wrong and the physics model should exit // this is main portion of the physics // ideal vehicle model /* servos are defined as 1. throttle (really just velocity control) 2. steering (really just turn rate omega) */ double timestep = rover.state.timestamp - rover.old_state.timestamp; if (timestep < 0) { // the sim is trying to go backwards in time std::cout << "[simpleRover] Error: Time went backwards" << std::endl; return false; } else if (timestep == 0) { // time did not advance. no physics step std::cout << "[simpleRover] Warning: Time did not step forward" << std::endl; return true; } else if (timestep > 60) { // limiting timestep to less than 1 minute std::cout << "[simpleRover] Warning: Time step was very large" << std::endl; return true; } // how fast is the rover moving double max_velocity = 1; // m/s double body_v = _interp1D(servo_out[2], 1100, 1900, -max_velocity, max_velocity); // how fast is the rover turning // Just doing 1-D right now. This Needs a bit of system dynamics math and geometry to get to 2-D. // double max_turn_rate = 5 * M_PI / 180; // double body_omega_z = _interp1D(servo_out[1], 1100, 1900, -max_turn_rate, max_turn_rate); // update the state rover.state.V_x = body_v; rover.state.accel_x = (rover.state.V_x - rover.old_state.V_x) / timestep; // derivative for accel double delta_pos_x = (rover.state.V_x) * timestep; // integrate for position change rover.state.pos_x = delta_pos_x + rover.old_state.pos_x; // plus c // update successful return true; } int main() { // init the ArduPilot connection libAP_JSON ap; if (ap.InitSockets("127.0.0.1", 9002)) { std::cout << "started socket" << std::endl; } // init a simpleRover simpleRover rover; // send and receive data from AP while (true) { rover.state.timestamp = (double) micros() / 1000000.0; if (ap.ReceiveServoPacket(servo_out)) { #if DEBUG_ENABLED std::cout << "servo_out PWM: ["; for (int i = 0; i < MAX_SERVO_CHANNELS - 1; ++i) { std::cout << servo_out[i] << ", "; } std::cout << servo_out[MAX_SERVO_CHANNELS - 1] << "]" << std::endl; #endif } if (!ap.ap_online) { continue; } // calc rover physics if (!rover.update(rover, servo_out)) { // something went wrong with the physics std::cout << "[simpleRover] Error: Physics update has caused an exit" << std::endl; return 1; }; // step the sim forward rover.old_state = rover.state; // send with the required state ap.SendState(rover.state.timestamp, 0, 0, 0, // gyro rover.state.accel_x, 0, -9.81, // accel rover.state.pos_x, 0, 0, // position 0, 0, 0, // attitude rover.state.V_x, 0, 0); // velocity } return 0; } double simpleRover::_interp1D(const double &x, const double &x0, const double &x1, const double &y0, const double &y1) { return ((y0 * (x1 - x)) + (y1 * (x - x0))) / (x1 - x0); }