/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Blimp simulator class */ #include "SIM_Blimp.h" #include #include using namespace SITL; extern const AP_HAL::HAL& hal; Blimp::Blimp(const char *frame_str) : Aircraft(frame_str) { mass = 0.07; radius = 0.25; moment_of_inertia = {0.004375, 0.004375, 0.004375}; //m*r^2 for hoop... cog = {0, 0, 0.1}; //10 cm down from center (i.e. center of buoyancy), for now k_tan = 0.6e-7; //Tangential (thrust) and normal force multipliers k_nor = 0;//3.4e-7; drag_constant = 0.05; drag_gyr_constant = 0.15; lock_step_scheduled = true; ::printf("Starting Blimp model\n"); } // calculate rotational and linear accelerations void Blimp::calculate_forces(const struct sitl_input &input, Vector3f &body_acc, Vector3f &rot_accel) { float delta_time = frame_time_us * 1.0e-6f; if (!hal.scheduler->is_system_initialized()) { return; } //all fin setup for (uint8_t i=0; i<4; i++) { fin[i].last_angle = fin[i].angle; if (input.servos[i] == 0) { fin[i].angle = 0; fin[1].servo_angle = 0; } else { fin[i].angle = filtered_servo_angle(input, i)*radians(45.0f)+radians(13.5); //for servo range of -75 deg to +75 deg fin[i].servo_angle = filtered_servo_angle(input, i); } if (fin[i].angle < fin[i].last_angle) fin[i].dir = 0; //thus 0 = "angle is reducing" else fin[i].dir = 1; fin[i].vel = degrees(fin[i].angle - fin[i].last_angle)/delta_time; //Could also do multi-point derivative filter - DerivativeFilter.cpp //deg/s (should really be rad/s, but that would require modifying k_tan, k_nor) //all other angles should be in radians. fin[i].vel = constrain_float(fin[i].vel, -450, 450); fin[i].T = sq(fin[i].vel) * k_tan; fin[i].N = sq(fin[i].vel) * k_nor; if (fin[i].dir == 0) fin[i].N = -fin[1].N; //normal force flips when fin changes direction fin[i].Fx = 0; fin[i].Fy = 0; fin[i].Fz = 0; } //Back fin fin[0].Fx = fin[0].T*cos(fin[0].angle);// + fin[0].N*sin(fin[0].angle); //causes forward movement fin[0].Fz = fin[0].T*sin(fin[0].angle);// - fin[0].N*cos(fin[0].angle); //causes height & wobble in y //Front fin fin[1].Fx = -fin[1].T*cos(fin[1].angle);// - fin[1].N*sin(fin[1].angle); //causes backward movement fin[1].Fz = fin[1].T*sin(fin[1].angle);// - fin[1].N*cos(fin[1].angle); //causes height & wobble in y //Right fin fin[2].Fy = -fin[2].T*cos(fin[2].angle);// - fin[2].N*sin(fin[2].angle); //causes left movement fin[2].Fx = fin[2].T*sin(fin[2].angle);// - fin[2].N*cos(fin[2].angle); //cause yaw & wobble in z //Left fin fin[3].Fy = fin[3].T*cos(fin[3].angle);// + fin[3].N*sin(fin[3].angle); //causes right movement fin[3].Fx = fin[3].T*sin(fin[3].angle);// + fin[3].N*cos(fin[3].angle); //causes yaw & wobble in z Vector3f F_BF{0,0,0}; for (uint8_t i=0; i<4; i++) { F_BF.x = F_BF.x + fin[i].Fx; F_BF.y = F_BF.y + fin[i].Fy; F_BF.z = F_BF.z + fin[i].Fz; } body_acc.x = F_BF.x/mass; //mass in kg, thus accel in m/s/s body_acc.y = F_BF.y/mass; body_acc.z = F_BF.z/mass; Vector3f rot_T{0,0,0}; AP::logger().WriteStreaming("SFT", "TimeUS,f0,f1,f2,f3", "Qffff", AP_HAL::micros64(), fin[0].T, fin[1].T, fin[2].T, fin[3].T); AP::logger().WriteStreaming("SFN", "TimeUS,n0,n1,n2,n3", "Qffff", AP_HAL::micros64(), fin[0].N, fin[1].N, fin[2].N, fin[3].N); AP::logger().WriteStreaming("SBA1", "TimeUS,ax,ay,az", "Qfff", AP_HAL::micros64(), body_acc.x, body_acc.y, body_acc.z); AP::logger().WriteStreaming("SFA1", "TimeUS,f0,f1,f2,f3", "Qffff", AP_HAL::micros64(), fin[0].angle, fin[1].angle, fin[2].angle, fin[3].angle); AP::logger().WriteStreaming("SFAN", "TimeUS,f0,f1,f2,f3", "Qffff", AP_HAL::micros64(), fin[0].servo_angle, fin[1].servo_angle, fin[2].servo_angle, fin[3].servo_angle); AP::logger().WriteStreaming("SSAN", "TimeUS,f0,f1,f2,f3", "QHHHH", AP_HAL::micros64(), input.servos[0], input.servos[1], input.servos[2], input.servos[3]); AP::logger().WriteStreaming("SFV1", "TimeUS,f0,f1,f2,f3", "Qffff", AP_HAL::micros64(), fin[0].vel, fin[1].vel, fin[2].vel, fin[3].vel); AP::logger().WriteStreaming("SRT1", "TimeUS,rtx,rty,rtz", "Qfff", AP_HAL::micros64(), rot_T.x, rot_T.y, rot_T.z); #if 0 //"Wobble" attempt rot_T.y = fin[0].Fz * radius + fin[1].Fz * radius; AP::logger().WriteStreaming("SRT2", "TimeUS,rtx,rty,rtz", "Qfff", AP_HAL::micros64(), rot_T.x, rot_T.y, rot_T.z); // the blimp has pendulum stability due to the centre of gravity being lower than the centre of buoyancy Vector3f ang; //x,y,z correspond to roll, pitch, yaw. dcm.to_euler(&ang.x, &ang.y, &ang.z); //rpy in radians Vector3f ang_ef = dcm * ang; rot_T.x -= mass*GRAVITY_MSS*sinf(M_PI-ang_ef.x)/cog.z; rot_T.y -= mass*GRAVITY_MSS*sinf(M_PI-ang_ef.y)/cog.z; AP::logger().WriteStreaming("SRT3", "TimeUS,rtx,rty,rtz", "Qfff", AP_HAL::micros64(), rot_T.x, rot_T.y, rot_T.z); AP::logger().WriteStreaming("SAN1", "TimeUS,anx,any,anz", "Qfff", AP_HAL::micros64(), ang.x, ang.y, ang.z); AP::logger().WriteStreaming("SAN2", "TimeUS,anx,any,anz", "Qfff", AP_HAL::micros64(), ang_ef.x, ang_ef.y, ang_ef.z); AP::logger().WriteStreaming("SAF1", "TimeUS,afx,afy,afz", "Qfff", AP_HAL::micros64(), sinf(ang.x), sinf(ang.y), sinf(ang.z)); AP::logger().WriteStreaming("SMGC", "TimeUS,m,g,cz", "Qfff", AP_HAL::micros64(), mass, GRAVITY_MSS, cog.z); #endif rot_T.z = fin[2].Fx * radius - fin[3].Fx * radius;//in N*m (Torque = force * lever arm) //rot accel = torque / moment of inertia //Torque = moment force. rot_accel.x = rot_T.x / moment_of_inertia.x; rot_accel.y = rot_T.y / moment_of_inertia.y; rot_accel.z = rot_T.z / moment_of_inertia.z; } /* update the blimp simulation by one time step */ void Blimp::update(const struct sitl_input &input) { float delta_time = frame_time_us * 1.0e-6f; Vector3f rot_accel = Vector3f(0,0,0); calculate_forces(input, accel_body, rot_accel); if (hal.scheduler->is_system_initialized()) { float gyr_sq = gyro.length_squared(); if (is_positive(gyr_sq)) { Vector3f force_gyr = (gyro.normalized() * drag_gyr_constant * gyr_sq); Vector3f ef_drag_accel_gyr = -force_gyr / mass; Vector3f bf_drag_accel_gyr = dcm.transposed() * ef_drag_accel_gyr; rot_accel += bf_drag_accel_gyr; } } #if 0 AP::logger().WriteStreaming("SBLM", "TimeUS,RAx,RAy,RAz", "Qfff", AP_HAL::micros64(), rot_accel.x, rot_accel.y, rot_accel.z); #endif // update rotational rates in body frame gyro += rot_accel * delta_time; gyro.x = constrain_float(gyro.x, -radians(2000.0f), radians(2000.0f)); gyro.y = constrain_float(gyro.y, -radians(2000.0f), radians(2000.0f)); gyro.z = constrain_float(gyro.z, -radians(2000.0f), radians(2000.0f)); // Vector3f ang; //x,y,z correspond to roll, pitch, yaw. // dcm.to_euler(&ang.x, &ang.y, &ang.z); //rpy in radians // dcm.from_euler(0.0f, 0.0f, ang.z); // update attitude dcm.rotate(gyro * delta_time); dcm.normalize(); if (hal.scheduler->is_system_initialized()) { float speed_sq = velocity_ef.length_squared(); if (is_positive(speed_sq)) { Vector3f force = (velocity_ef.normalized() * drag_constant * speed_sq); Vector3f ef_drag_accel = -force / mass; Vector3f bf_drag_accel = dcm.transposed() * ef_drag_accel; accel_body += bf_drag_accel; } // add lifting force exactly equal to gravity, for neutral buoyancy (buoyancy in ef) accel_body += dcm.transposed() * Vector3f(0,0,-GRAVITY_MSS); } Vector3f accel_earth = dcm * accel_body; accel_earth += Vector3f(0.0f, 0.0f, GRAVITY_MSS); //add gravity velocity_ef += accel_earth * delta_time; position += (velocity_ef * delta_time).todouble(); //update position vector update_position(); //updates the position from the Vector3f position time_advance(); update_mag_field_bf(); rate_hz = sitl->loop_rate_hz; }