/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include "AP_MotorsHeli_Single.h" #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_MotorsHeli_Single::var_info[] = { AP_NESTEDGROUPINFO(AP_MotorsHeli, 0), // @Param: SV1_POS // @DisplayName: Servo 1 Position // @Description: Angular location of swash servo #1 // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli_Single, _servo1_pos, AP_MOTORS_HELI_SINGLE_SERVO1_POS), // @Param: SV2_POS // @DisplayName: Servo 2 Position // @Description: Angular location of swash servo #2 // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli_Single, _servo2_pos, AP_MOTORS_HELI_SINGLE_SERVO2_POS), // @Param: SV3_POS // @DisplayName: Servo 3 Position // @Description: Angular location of swash servo #3 // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli_Single, _servo3_pos, AP_MOTORS_HELI_SINGLE_SERVO3_POS), // @Param: TAIL_TYPE // @DisplayName: Tail Type // @Description: Tail type selection. Simpler yaw controller used if external gyro is selected // @Values: 0:Servo only,1:Servo with ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch // @User: Standard AP_GROUPINFO("TAIL_TYPE", 4, AP_MotorsHeli_Single, _tail_type, AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO), // @Param: SWASH_TYPE // @DisplayName: Swash Type // @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing // @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing // @User: Standard AP_GROUPINFO("SWASH_TYPE", 5, AP_MotorsHeli_Single, _swash_type, AP_MOTORS_HELI_SINGLE_SWASH_CCPM), // @Param: GYR_GAIN // @DisplayName: External Gyro Gain // @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro // @Range: 0 1000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("GYR_GAIN", 6, AP_MotorsHeli_Single, _ext_gyro_gain_std, AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN), // @Param: PHANG // @DisplayName: Swashplate Phase Angle Compensation // @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem // @Range: -90 90 // @Units: Degrees // @User: Advanced // @Increment: 1 AP_GROUPINFO("PHANG", 7, AP_MotorsHeli_Single, _phase_angle, 0), // @Param: COLYAW // @DisplayName: Collective-Yaw Mixing // @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics. // @Range: -10 10 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("COLYAW", 8, AP_MotorsHeli_Single, _collective_yaw_effect, 0), // @Param: FLYBAR_MODE // @DisplayName: Flybar Mode Selector // @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode // @Values: 0:NoFlybar,1:Flybar // @User: Standard AP_GROUPINFO("FLYBAR_MODE", 9, AP_MotorsHeli_Single, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR), // @Param: TAIL_SPEED // @DisplayName: Direct Drive VarPitch Tail ESC speed // @Description: Direct Drive VarPitch Tail ESC speed. Only used when TailType is DirectDrive VarPitch // @Range: 0 1000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("TAIL_SPEED", 10, AP_MotorsHeli_Single, _direct_drive_tailspeed, AP_MOTORS_HELI_SINGLE_DDVPT_SPEED_DEFAULT), // @Param: GYR_GAIN_ACRO // @DisplayName: External Gyro Gain for ACRO // @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro. A value of zero means to use H_GYR_GAIN // @Range: 0 1000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("GYR_GAIN_ACRO", 11, AP_MotorsHeli_Single, _ext_gyro_gain_acro, 0), // @Group: SV1_ // @Path: ../RC_Channel/RC_Channel.cpp AP_SUBGROUPINFO(_swash_servo_1, "SV1_", 12, AP_MotorsHeli_Single, RC_Channel), // @Group: SV2_ // @Path: ../RC_Channel/RC_Channel.cpp AP_SUBGROUPINFO(_swash_servo_2, "SV2_", 13, AP_MotorsHeli_Single, RC_Channel), // @Group: SV3_ // @Path: ../RC_Channel/RC_Channel.cpp AP_SUBGROUPINFO(_swash_servo_3, "SV3_", 14, AP_MotorsHeli_Single, RC_Channel), // @Group: SV4_ // @Path: ../RC_Channel/RC_Channel.cpp AP_SUBGROUPINFO(_yaw_servo, "SV4_", 15, AP_MotorsHeli_Single, RC_Channel), // @Param: RSC_PWM_MIN // @DisplayName: RSC PWM output miniumum // @Description: This sets the PWM output on RSC channel for maximum rotor speed // @Range: 0 2000 // @User: Standard AP_GROUPINFO("RSC_PWM_MIN", 16, AP_MotorsHeli_Single, _main_rotor._pwm_min, 1000), // @Param: RSC_PWM_MAX // @DisplayName: RSC PWM output maxiumum // @Description: This sets the PWM output on RSC channel for miniumum rotor speed // @Range: 0 2000 // @User: Standard AP_GROUPINFO("RSC_PWM_MAX", 17, AP_MotorsHeli_Single, _main_rotor._pwm_max, 2000), // @Param: RSC_PWM_REV // @DisplayName: RSC PWM reversal // @Description: This controls reversal of the RSC channel output // @Values: -1:Reversed,1:Normal // @User: Standard AP_GROUPINFO("RSC_PWM_REV", 18, AP_MotorsHeli_Single, _main_rotor._pwm_rev, 1), // parameters up to and including 29 are reserved for tradheli AP_GROUPEND }; // set update rate to motors - a value in hertz void AP_MotorsHeli_Single::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // setup fast channels uint32_t mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_3 | 1U << AP_MOTORS_MOT_4; rc_set_freq(mask, _speed_hz); } // enable - starts allowing signals to be sent to motors and servos void AP_MotorsHeli_Single::enable() { // enable output channels rc_enable_ch(AP_MOTORS_MOT_1); // swash servo 1 rc_enable_ch(AP_MOTORS_MOT_2); // swash servo 2 rc_enable_ch(AP_MOTORS_MOT_3); // swash servo 3 rc_enable_ch(AP_MOTORS_MOT_4); // yaw rc_enable_ch(AP_MOTORS_HELI_SINGLE_AUX); // output for gyro gain or direct drive variable pitch tail motor rc_enable_ch(AP_MOTORS_HELI_SINGLE_RSC); // output for main rotor esc } // init_outputs - initialise Servo/PWM ranges and endpoints void AP_MotorsHeli_Single::init_outputs() { // reset swash servo range and endpoints reset_swash_servo (_swash_servo_1); reset_swash_servo (_swash_servo_2); reset_swash_servo (_swash_servo_3); _yaw_servo.set_angle(4500); // set main rotor servo range // tail rotor servo use range as set in vehicle code for rc7 _main_rotor.init_servo(); } // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsHeli_Single::output_test(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!armed()) { return; } // output to motors and servos switch (motor_seq) { case 1: // swash servo 1 rc_write(AP_MOTORS_MOT_1, pwm); break; case 2: // swash servo 2 rc_write(AP_MOTORS_MOT_2, pwm); break; case 3: // swash servo 3 rc_write(AP_MOTORS_MOT_3, pwm); break; case 4: // external gyro & tail servo if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) { if (_acro_tail && _ext_gyro_gain_acro > 0) { write_aux(_ext_gyro_gain_acro/1000.0f); } else { write_aux(_ext_gyro_gain_std/1000.0f); } } rc_write(AP_MOTORS_MOT_4, pwm); break; case 5: // main rotor rc_write(AP_MOTORS_HELI_SINGLE_RSC, pwm); break; default: // do nothing break; } } // set_desired_rotor_speed void AP_MotorsHeli_Single::set_desired_rotor_speed(float desired_speed) { _main_rotor.set_desired_speed(desired_speed); // always send desired speed to tail rotor control, will do nothing if not DDVPT not enabled _tail_rotor.set_desired_speed(_direct_drive_tailspeed/1000.0f); } // calculate_scalars - recalculates various scalers used. void AP_MotorsHeli_Single::calculate_armed_scalars() { _main_rotor.set_ramp_time(_rsc_ramp_time); _main_rotor.set_runup_time(_rsc_runup_time); _main_rotor.set_critical_speed(_rsc_critical/1000.0f); _main_rotor.set_idle_output(_rsc_idle_output/1000.0f); _main_rotor.set_power_output_range(_rsc_power_low/1000.0f, _rsc_power_high/1000.0f, _rsc_power_negc/1000.0f, (uint16_t)_rsc_slewrate.get()); } // calculate_scalars - recalculates various scalers used. void AP_MotorsHeli_Single::calculate_scalars() { // range check collective min, max and mid if( _collective_min >= _collective_max ) { _collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN; _collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX; } _collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max); // calculate collective mid point as a number from 0 to 1 _collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min)); // calculate factors based on swash type and servo position calculate_roll_pitch_collective_factors(); // send setpoints to main rotor controller and trigger recalculation of scalars _main_rotor.set_control_mode(static_cast(_rsc_mode.get())); calculate_armed_scalars(); // send setpoints to tail rotor controller and trigger recalculation of scalars if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) { _tail_rotor.set_control_mode(ROTOR_CONTROL_MODE_SPEED_SETPOINT); _tail_rotor.set_ramp_time(AP_MOTORS_HELI_SINGLE_DDVPT_RAMP_TIME); _tail_rotor.set_runup_time(AP_MOTORS_HELI_SINGLE_DDVPT_RUNUP_TIME); _tail_rotor.set_critical_speed(_rsc_critical/1000.0f); _tail_rotor.set_idle_output(_rsc_idle_output/1000.0f); } else { _tail_rotor.set_control_mode(ROTOR_CONTROL_MODE_DISABLED); _tail_rotor.set_ramp_time(0); _tail_rotor.set_runup_time(0); _tail_rotor.set_critical_speed(0); _tail_rotor.set_idle_output(0); } } // calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position void AP_MotorsHeli_Single::calculate_roll_pitch_collective_factors() { if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_CCPM) { //CCPM Swashplate, perform control mixing // roll factors _rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _phase_angle)); _rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _phase_angle)); _rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _phase_angle)); // pitch factors _pitchFactor[CH_1] = cosf(radians(_servo1_pos - _phase_angle)); _pitchFactor[CH_2] = cosf(radians(_servo2_pos - _phase_angle)); _pitchFactor[CH_3] = cosf(radians(_servo3_pos - _phase_angle)); // collective factors _collectiveFactor[CH_1] = 1; _collectiveFactor[CH_2] = 1; _collectiveFactor[CH_3] = 1; }else{ //H1 Swashplate, keep servo outputs separated // roll factors _rollFactor[CH_1] = 1; _rollFactor[CH_2] = 0; _rollFactor[CH_3] = 0; // pitch factors _pitchFactor[CH_1] = 0; _pitchFactor[CH_2] = 1; _pitchFactor[CH_3] = 0; // collective factors _collectiveFactor[CH_1] = 0; _collectiveFactor[CH_2] = 0; _collectiveFactor[CH_3] = 1; } } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsHeli_Single::get_motor_mask() { // heli uses channels 1,2,3,4,7 and 8 return rc_map_mask(1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << AP_MOTORS_HELI_SINGLE_AUX | 1U << AP_MOTORS_HELI_SINGLE_RSC); } // update_motor_controls - sends commands to motor controllers void AP_MotorsHeli_Single::update_motor_control(RotorControlState state) { // Send state update to motors _tail_rotor.output(state); _main_rotor.output(state); if (state == ROTOR_CONTROL_STOP){ // set engine run enable aux output to not run position to kill engine when disarmed RC_Channel_aux::set_radio_to_min(RC_Channel_aux::k_engine_run_enable); } else { // else if armed, set engine run enable output to run position RC_Channel_aux::set_radio_to_max(RC_Channel_aux::k_engine_run_enable); } // Check if both rotors are run-up, tail rotor controller always returns true if not enabled _heliflags.rotor_runup_complete = ( _main_rotor.is_runup_complete() && _tail_rotor.is_runup_complete() ); } // // move_actuators - moves swash plate and tail rotor // - expected ranges: // roll : -1 ~ +1 // pitch: -1 ~ +1 // collective: 0 ~ 1 // yaw: -1 ~ +1 // void AP_MotorsHeli_Single::move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out) { float yaw_offset = 0.0f; // initialize limits flag limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // rescale roll_out and pitch_out into the min and max ranges to provide linear motion // across the input range instead of stopping when the input hits the constrain value // these calculations are based on an assumption of the user specified cyclic_max // coming into this equation at 4500 or less float total_out = norm(pitch_out, roll_out); if (total_out > (_cyclic_max/4500.0f)) { float ratio = (float)(_cyclic_max/4500.0f) / total_out; roll_out *= ratio; pitch_out *= ratio; limit.roll_pitch = true; } // constrain collective input float collective_out = coll_in; if (collective_out <= 0.0f) { collective_out = 0.0f; limit.throttle_lower = true; } if (collective_out >= 1.0f) { collective_out = 1.0f; limit.throttle_upper = true; } // ensure not below landed/landing collective if (_heliflags.landing_collective && collective_out < (_land_collective_min/1000.0f)) { collective_out = (_land_collective_min/1000.0f); limit.throttle_lower = true; } // if servo output not in manual mode, process pre-compensation factors if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) { // rudder feed forward based on collective // the feed-forward is not required when the motor is stopped or at idle, and thus not creating torque // also not required if we are using external gyro if ((_main_rotor.get_control_output() > _main_rotor.get_idle_output()) && _tail_type != AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) { // sanity check collective_yaw_effect _collective_yaw_effect = constrain_float(_collective_yaw_effect, -AP_MOTORS_HELI_SINGLE_COLYAW_RANGE, AP_MOTORS_HELI_SINGLE_COLYAW_RANGE); // the 4.5 scaling factor is to bring the values in line with previous releases yaw_offset = _collective_yaw_effect * fabsf(collective_out - _collective_mid_pct) / 4.5f; } } else { yaw_offset = 0.0f; } // feed power estimate into main rotor controller // ToDo: include tail rotor power? // ToDo: add main rotor cyclic power? if (collective_out > _collective_mid_pct) { // +ve motor load for +ve collective _main_rotor.set_motor_load((collective_out - _collective_mid_pct) / (1.0f - _collective_mid_pct)); } else { // -ve motor load for -ve collective _main_rotor.set_motor_load((collective_out - _collective_mid_pct) / _collective_mid_pct); } // swashplate servos float collective_scalar = ((float)(_collective_max-_collective_min))/1000.0f; float coll_out_scaled = collective_out * collective_scalar + (_collective_min - 1000)/1000.0f; float servo1_out = ((_rollFactor[CH_1] * roll_out) + (_pitchFactor[CH_1] * pitch_out))*0.45f + _collectiveFactor[CH_1] * coll_out_scaled; float servo2_out = ((_rollFactor[CH_2] * roll_out) + (_pitchFactor[CH_2] * pitch_out))*0.45f + _collectiveFactor[CH_2] * coll_out_scaled; if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_H1) { servo1_out += 0.5f; servo2_out += 0.5f; } float servo3_out = ((_rollFactor[CH_3] * roll_out) + (_pitchFactor[CH_3] * pitch_out))*0.45f + _collectiveFactor[CH_3] * coll_out_scaled; hal.rcout->cork(); // rescale from -1..1, so we can use the pwm calc that includes trim servo1_out = 2*servo1_out - 1; servo2_out = 2*servo2_out - 1; servo3_out = 2*servo3_out - 1; // actually move the servos rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(servo1_out, _swash_servo_1)); rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(servo2_out, _swash_servo_2)); rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(servo3_out, _swash_servo_3)); // update the yaw rate using the tail rotor/servo move_yaw(yaw_out + yaw_offset); hal.rcout->push(); } // move_yaw void AP_MotorsHeli_Single::move_yaw(float yaw_out) { // sanity check yaw_out if (yaw_out < -1.0f) { yaw_out = -1.0f; limit.yaw = true; } if (yaw_out > 1.0f) { yaw_out = 1.0f; limit.yaw = true; } rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(yaw_out, _yaw_servo)); if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) { // output gain to exernal gyro if (_acro_tail && _ext_gyro_gain_acro > 0) { write_aux(_ext_gyro_gain_acro/1000.0f); } else { write_aux(_ext_gyro_gain_std/1000.0f); } } else if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH && _main_rotor.get_desired_speed() > 0.0f) { // output yaw servo to tail rsc // To-Do: fix this messy calculation write_aux(yaw_out*0.5f+1.0f); } } // write_aux - converts servo_out parameter value (0 to 1 range) to pwm and outputs to aux channel (ch7) void AP_MotorsHeli_Single::write_aux(float servo_out) { rc_write(AP_MOTORS_HELI_SINGLE_AUX, calc_pwm_output_0to1(servo_out, _servo_aux)); } // servo_test - move servos through full range of movement void AP_MotorsHeli_Single::servo_test() { _servo_test_cycle_time += 1.0f / _loop_rate; if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back (_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){ _pitch_test += (1.0f / (_loop_rate / 2.0f)); _oscillate_angle += 8 * M_PI / _loop_rate; _yaw_test = 0.5f * sinf(_oscillate_angle); } else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around (_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){ _oscillate_angle += M_PI / (2 * _loop_rate); _roll_test = sinf(_oscillate_angle); _pitch_test = cosf(_oscillate_angle); _yaw_test = sinf(_oscillate_angle); } else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level (_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){ _pitch_test -= (1.0f / (_loop_rate / 2.0f)); _oscillate_angle += 8 * M_PI / _loop_rate; _yaw_test = 0.5f * sinf(_oscillate_angle); } else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top _collective_test += (1.0f / _loop_rate); _oscillate_angle += 2 * M_PI / _loop_rate; _yaw_test = sinf(_oscillate_angle); } else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom _collective_test -= (1.0f / _loop_rate); _oscillate_angle += 2 * M_PI / _loop_rate; _yaw_test = sinf(_oscillate_angle); } else { // reset cycle _servo_test_cycle_time = 0.0f; _oscillate_angle = 0.0f; _collective_test = 0.0f; _roll_test = 0.0f; _pitch_test = 0.0f; _yaw_test = 0.0f; // decrement servo test cycle counter at the end of the cycle if (_servo_test_cycle_counter > 0){ _servo_test_cycle_counter--; } } // over-ride servo commands to move servos through defined ranges _throttle_in = _collective_test; _roll_in = _roll_test; _pitch_in = _pitch_test; _yaw_in = _yaw_test; } // parameter_check - check if helicopter specific parameters are sensible bool AP_MotorsHeli_Single::parameter_check(bool display_msg) const { // returns false if Phase Angle is outside of range if ((_phase_angle > 90) || (_phase_angle < -90)){ if (display_msg) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_PHANG out of range"); } return false; } // returns false if Acro External Gyro Gain is outside of range if ((_ext_gyro_gain_acro < 0) || (_ext_gyro_gain_acro > 1000)){ if (display_msg) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_GYR_GAIN_ACRO out of range"); } return false; } // returns false if Standard External Gyro Gain is outside of range if ((_ext_gyro_gain_std < 0) || (_ext_gyro_gain_std > 1000)){ if (display_msg) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_GYR_GAIN out of range"); } return false; } // check parent class parameters return AP_MotorsHeli::parameter_check(display_msg); }