/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if (CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_APM2) #include #include #include #include "Scheduler.h" #include "ISRRegistry.h" using namespace AP_HAL_AVR; extern const AP_HAL::HAL& hal; /* AVRScheduler timer interrupt period is controlled by TCNT2. * 256-62 gives a 1kHz period. */ #define RESET_TCNT2_VALUE (256 - 62) /* Static AVRScheduler variables: */ AVRTimer AVRScheduler::_timer; AP_HAL::TimedProc AVRScheduler::_failsafe = NULL; volatile bool AVRScheduler::_timer_suspended = false; volatile bool AVRScheduler::_in_timer_proc = false; AP_HAL::TimedProc AVRScheduler::_timer_proc[AVR_SCHEDULER_MAX_TIMER_PROCS] = {NULL}; uint8_t AVRScheduler::_num_timer_procs = 0; AVRScheduler::AVRScheduler() : _delay_cb(NULL), _min_delay_cb_ms(65535), _nested_atomic_ctr(0) {} void AVRScheduler::init(void* _isrregistry) { ISRRegistry* isrregistry = (ISRRegistry*) _isrregistry; /* _timer: sets up timer hardware to Arduino defaults, and * uses TIMER0 to implement millis & micros */ _timer.init(); /* TIMER2: Setup the overflow interrupt to occur at 1khz. */ TIMSK2 = 0; /* Disable timer interrupt */ TCCR2A = 0; /* Normal counting mode */ TCCR2B = _BV(CS21) | _BV(CS22); /* Prescaler to clk/256 */ TCNT2 = 0; /* Set count to 0 */ TIFR2 = _BV(TOV2); /* Clear pending interrupts */ TIMSK2 = _BV(TOIE2); /* Enable overflow interrupt*/ /* Register _timer_event to trigger on overflow */ isrregistry->register_signal(ISR_REGISTRY_TIMER2_OVF, _timer_event); } uint32_t AVRScheduler::micros() { return _timer.micros(); } uint32_t AVRScheduler::millis() { return _timer.millis(); } void AVRScheduler::delay_microseconds(uint16_t us) { _timer.delay_microseconds(us); } void AVRScheduler::delay(uint16_t ms) { uint32_t start = _timer.micros(); while (ms > 0) { while ((_timer.micros() - start) >= 1000) { ms--; if (ms == 0) break; start += 1000; } if (_min_delay_cb_ms <= ms) { if (_delay_cb) { _delay_cb(); } } } } void AVRScheduler::register_delay_callback(AP_HAL::Proc proc, uint16_t min_time_ms) { _delay_cb = proc; _min_delay_cb_ms = min_time_ms; } void AVRScheduler::register_timer_process(AP_HAL::TimedProc proc) { for (int i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] == proc) { return; } } if (_num_timer_procs < AVR_SCHEDULER_MAX_TIMER_PROCS) { /* this write to _timer_proc can be outside the critical section * because that memory won't be used until _num_timer_procs is * incremented. */ _timer_proc[_num_timer_procs] = proc; /* _num_timer_procs is used from interrupt, and multiple bytes long. */ cli(); _num_timer_procs++; sei(); } } void AVRScheduler::register_timer_failsafe( AP_HAL::TimedProc failsafe, uint32_t period_us) { /* XXX Assert period_us == 1000 */ _failsafe = failsafe; } void AVRScheduler::suspend_timer_procs() { _timer_suspended = true; } void AVRScheduler::resume_timer_procs() { _timer_suspended = false; } void AVRScheduler::_timer_event() { // we enable the interrupt again immediately and also enable // interrupts. This allows other time critical interrupts to // run (such as the serial receive interrupt). We catch the // timer calls taking too long using _in_timer_call. // This approach also gives us a nice uniform spacing between // timer calls TCNT2 = RESET_TCNT2_VALUE; sei(); uint32_t tnow = _timer.micros(); if (_in_timer_proc) { // the timer calls took longer than the period of the // timer. This is bad, and may indicate a serious // driver failure. We can't just call the drivers // again, as we could run out of stack. So we only // call the _failsafe call. It's job is to detect if // the drivers or the main loop are indeed dead and to // activate whatever failsafe it thinks may help if // need be. We assume the failsafe code can't // block. If it does then we will recurse and die when // we run out of stack if (_failsafe != NULL) { _failsafe(tnow); } return; } _in_timer_proc = true; if (!_timer_suspended) { // now call the timer based drivers for (int i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] != NULL) { _timer_proc[i](tnow); } } } // and the failsafe, if one is setup if (_failsafe != NULL) { _failsafe(tnow); } _in_timer_proc = false; } void AVRScheduler::begin_atomic() { _nested_atomic_ctr++; cli(); } void AVRScheduler::end_atomic() { if (_nested_atomic_ctr == 0) { hal.uartA->println_P(PSTR("ATOMIC NESTING ERROR")); return; } _nested_atomic_ctr--; if (_nested_atomic_ctr == 0) { sei(); } } void AVRScheduler::panic(const prog_char_t* errormsg) { /* Suspend timer processes. We still want the timer event to go off * to run the _failsafe code, however. */ _timer_suspended = true; /* Print the error message on both ports */ hal.uartA->println_P(errormsg); hal.uartC->println_P(errormsg); /* Spin forever. */ for(;;); } void AVRScheduler::reboot() { hal.uartA->println_P(PSTR("GOING DOWN FOR A REBOOT\r\n")); hal.scheduler->delay(100); #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 /* The APM2 bootloader will reset the watchdog shortly after * starting, so we can use the watchdog to force a reboot */ cli(); wdt_enable(WDTO_15MS); for(;;); #else cli(); /* Making a null pointer call will cause all AVRs to reboot * but they may not come back alive properly - we need to setup * the IO the way the bootloader would. */ void (*fn)(void) = NULL; fn(); for(;;); #endif } #endif