/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Code by Jon Challinger // Modified by Paul Riseborough // #include #include "AP_RollController.h" extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_RollController::var_info[] = { // @Param: TCONST // @DisplayName: Roll Time Constant // @Description: Time constant in seconds from demanded to achieved roll angle. Most models respond well to 0.5. May be reduced for faster responses, but setting lower than a model can achieve will not help. // @Range: 0.4 1.0 // @Units: s // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("TCONST", 0, AP_RollController, gains.tau, 0.5f), // @Param: P // @DisplayName: Proportional Gain // @Description: Proportional gain from roll angle demands to ailerons. Higher values allow more servo response but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode. // @Range: 0.1 4.0 // @Increment: 0.1 // @User: User AP_GROUPINFO("P", 1, AP_RollController, gains.P, 1.0f), // @Param: D // @DisplayName: Damping Gain // @Description: Damping gain from roll acceleration to ailerons. Higher values reduce rolling in turbulence, but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode. // @Range: 0 0.2 // @Increment: 0.01 // @User: User AP_GROUPINFO("D", 2, AP_RollController, gains.D, 0.08f), // @Param: I // @DisplayName: Integrator Gain // @Description: Integrator gain from long-term roll angle offsets to ailerons. Higher values "trim" out offsets faster but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode. // @Range: 0 1.0 // @Increment: 0.05 // @User: User AP_GROUPINFO("I", 3, AP_RollController, gains.I, 0.3f), // @Param: RMAX // @DisplayName: Maximum Roll Rate // @Description: Maximum roll rate that the roll controller demands (degrees/sec) in ACRO mode. // @Range: 0 180 // @Units: deg/s // @Increment: 1 // @User: Advanced AP_GROUPINFO("RMAX", 4, AP_RollController, gains.rmax, 0), // @Param: IMAX // @DisplayName: Integrator limit // @Description: Limit of roll integrator gain in centi-degrees of servo travel. Servos are assumed to have +/- 4500 centi-degrees of travel, so a value of 3000 allows trim of up to 2/3 of servo travel range. // @Range: 0 4500 // @Increment: 1 // @User: Advanced AP_GROUPINFO("IMAX", 5, AP_RollController, gains.imax, 3000), // @Param: FF // @DisplayName: Feed forward Gain // @Description: Gain from demanded rate to aileron output. // @Range: 0.1 4.0 // @Increment: 0.1 // @User: User AP_GROUPINFO("FF", 6, AP_RollController, gains.FF, 0.0f), AP_GROUPEND }; /* internal rate controller, called by attitude and rate controller public functions */ int32_t AP_RollController::_get_rate_out(float desired_rate, float scaler, bool disable_integrator) { uint32_t tnow = AP_HAL::millis(); uint32_t dt = tnow - _last_t; if (_last_t == 0 || dt > 1000) { dt = 0; } _last_t = tnow; // Calculate equivalent gains so that values for K_P and K_I can be taken across from the old PID law // No conversion is required for K_D float ki_rate = gains.I * gains.tau; float eas2tas = _ahrs.get_EAS2TAS(); float kp_ff = MAX((gains.P - gains.I * gains.tau) * gains.tau - gains.D , 0) / eas2tas; float k_ff = gains.FF / eas2tas; float delta_time = (float)dt * 0.001f; // Get body rate vector (radians/sec) float omega_x = _ahrs.get_gyro().x; // Calculate the roll rate error (deg/sec) and apply gain scaler float achieved_rate = ToDeg(omega_x); float rate_error = (desired_rate - achieved_rate) * scaler; // Get an airspeed estimate - default to zero if none available float aspeed; if (!_ahrs.airspeed_estimate(aspeed)) { aspeed = 0.0f; } // Multiply roll rate error by _ki_rate, apply scaler and integrate // Scaler is applied before integrator so that integrator state relates directly to aileron deflection // This means aileron trim offset doesn't change as the value of scaler changes with airspeed // Don't integrate if in stabilise mode as the integrator will wind up against the pilots inputs if (!disable_integrator && ki_rate > 0) { //only integrate if gain and time step are positive and airspeed above min value. if (dt > 0 && aspeed > float(aparm.airspeed_min)) { float integrator_delta = rate_error * ki_rate * delta_time * scaler; // prevent the integrator from increasing if surface defln demand is above the upper limit if (_last_out < -45) { integrator_delta = MAX(integrator_delta , 0); } else if (_last_out > 45) { // prevent the integrator from decreasing if surface defln demand is below the lower limit integrator_delta = MIN(integrator_delta, 0); } _pid_info.I += integrator_delta; } } else { _pid_info.I = 0; } // Scale the integration limit float intLimScaled = gains.imax * 0.01f; // Constrain the integrator state _pid_info.I = constrain_float(_pid_info.I, -intLimScaled, intLimScaled); // Calculate the demanded control surface deflection // Note the scaler is applied again. We want a 1/speed scaler applied to the feed-forward // path, but want a 1/speed^2 scaler applied to the rate error path. // This is because acceleration scales with speed^2, but rate scales with speed. _pid_info.D = rate_error * gains.D * scaler; _pid_info.P = desired_rate * kp_ff * scaler; _pid_info.FF = desired_rate * k_ff * scaler; _pid_info.target = desired_rate; _pid_info.actual = achieved_rate; _last_out = _pid_info.FF + _pid_info.P + _pid_info.D; if (autotune.running && aspeed > aparm.airspeed_min) { // let autotune have a go at the values // Note that we don't pass the integrator component so we get // a better idea of how much the base PD controller // contributed autotune.update(desired_rate, achieved_rate, _last_out); } _last_out += _pid_info.I; // Convert to centi-degrees and constrain return constrain_float(_last_out * 100, -4500, 4500); } /* Function returns an equivalent elevator deflection in centi-degrees in the range from -4500 to 4500 A positive demand is up Inputs are: 1) desired roll rate in degrees/sec 2) control gain scaler = scaling_speed / aspeed */ int32_t AP_RollController::get_rate_out(float desired_rate, float scaler) { return _get_rate_out(desired_rate, scaler, false); } /* Function returns an equivalent aileron deflection in centi-degrees in the range from -4500 to 4500 A positive demand is up Inputs are: 1) demanded bank angle in centi-degrees 2) control gain scaler = scaling_speed / aspeed 3) boolean which is true when stabilise mode is active 4) minimum FBW airspeed (metres/sec) */ int32_t AP_RollController::get_servo_out(int32_t angle_err, float scaler, bool disable_integrator) { if (gains.tau < 0.1f) { gains.tau.set(0.1f); } // Calculate the desired roll rate (deg/sec) from the angle error float desired_rate = angle_err * 0.01f / gains.tau; // Limit the demanded roll rate if (gains.rmax && desired_rate < -gains.rmax) { desired_rate = - gains.rmax; } else if (gains.rmax && desired_rate > gains.rmax) { desired_rate = gains.rmax; } return _get_rate_out(desired_rate, scaler, disable_integrator); } void AP_RollController::reset_I() { _pid_info.I = 0; }