/* * AP_Navigator.h * Copyright (C) James Goppert 2010 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #ifndef AP_Navigator_H #define AP_Navigator_H #include "AP_HardwareAbstractionLayer.h" #include "../AP_DCM/AP_DCM.h" #include "../AP_Math/AP_Math.h" #include "../AP_Compass/AP_Compass.h" #include "AP_MavlinkCommand.h" #include "constants.h" #include "AP_Var_keys.h" #include "../AP_RangeFinder/AP_RangeFinder.h" #include "../AP_IMU/AP_IMU.h" namespace apo { /// Navigator class class AP_Navigator { public: AP_Navigator(AP_HardwareAbstractionLayer * hal) : _hal(hal), _timeStamp(0), _roll(0), _rollRate(0), _pitch(0), _pitchRate(0), _yaw(0), _yawRate(0), _airSpeed(0), _groundSpeed(0), _vD(0), _lat_degInt(0), _lon_degInt(0), _alt_intM(0) { } virtual void calibrate() { } virtual void updateFast(float dt) = 0; virtual void updateSlow(float dt) = 0; float getPD() const { return AP_MavlinkCommand::home.getPD(getAlt_intM()); } float getPE() const { return AP_MavlinkCommand::home.getPE(getLat_degInt(), getLon_degInt()); } float getPN() const { return AP_MavlinkCommand::home.getPN(getLat_degInt(), getLon_degInt()); } void setPD(float _pD) { setAlt(AP_MavlinkCommand::home.getAlt(_pD)); } void setPE(float _pE) { setLat(AP_MavlinkCommand::home.getLat(_pE)); } void setPN(float _pN) { setLon(AP_MavlinkCommand::home.getLon(_pN)); } float getAirSpeed() const { return _airSpeed; } int32_t getAlt_intM() const { return _alt_intM; } float getAlt() const { return _alt_intM / scale_m; } void setAlt(float _alt) { this->_alt_intM = _alt * scale_m; } float getLat() const { //Serial.print("getLatfirst"); //Serial.println(_lat_degInt * degInt2Rad); return _lat_degInt * degInt2Rad; } void setLat(float _lat) { //Serial.print("setLatfirst"); //Serial.println(_lat * rad2DegInt); setLat_degInt(_lat*rad2DegInt); } float getLon() const { return _lon_degInt * degInt2Rad; } void setLon(float _lon) { this->_lon_degInt = _lon * rad2DegInt; } float getVD() const { return _vD; } float getVE() const { return sin(getYaw()) * getGroundSpeed(); } float getGroundSpeed() const { return _groundSpeed; } int32_t getLat_degInt() const { //Serial.print("getLat_degInt"); //Serial.println(_lat_degInt); return _lat_degInt; } int32_t getLon_degInt() const { return _lon_degInt; } float getVN() const { return cos(getYaw()) * getGroundSpeed(); } float getPitch() const { return _pitch; } float getPitchRate() const { return _pitchRate; } float getRoll() const { return _roll; } float getRollRate() const { return _rollRate; } float getYaw() const { return _yaw; } float getYawRate() const { return _yawRate; } void setAirSpeed(float airSpeed) { _airSpeed = airSpeed; } void setAlt_intM(int32_t alt_intM) { _alt_intM = alt_intM; } void setVD(float vD) { _vD = vD; } void setGroundSpeed(float groundSpeed) { _groundSpeed = groundSpeed; } void setLat_degInt(int32_t lat_degInt) { _lat_degInt = lat_degInt; //Serial.print("setLat_degInt"); //Serial.println(_lat_degInt); } void setLon_degInt(int32_t lon_degInt) { _lon_degInt = lon_degInt; } void setPitch(float pitch) { _pitch = pitch; } void setPitchRate(float pitchRate) { _pitchRate = pitchRate; } void setRoll(float roll) { _roll = roll; } void setRollRate(float rollRate) { _rollRate = rollRate; } void setYaw(float yaw) { _yaw = yaw; } void setYawRate(float yawRate) { _yawRate = yawRate; } void setTimeStamp(int32_t timeStamp) { _timeStamp = timeStamp; } int32_t getTimeStamp() const { return _timeStamp; } protected: AP_HardwareAbstractionLayer * _hal; private: int32_t _timeStamp; // micros clock float _roll; // rad float _rollRate; //rad/s float _pitch; // rad float _pitchRate; // rad/s float _yaw; // rad float _yawRate; // rad/s float _airSpeed; // m/s float _groundSpeed; // m/s float _vD; // m/s int32_t _lat_degInt; // deg / 1e7 int32_t _lon_degInt; // deg / 1e7 int32_t _alt_intM; // meters / 1e3 }; class DcmNavigator: public AP_Navigator { private: /** * Sensors */ RangeFinder * _rangeFinderDown; AP_DCM * _dcm; IMU * _imu; uint16_t _imuOffsetAddress; public: DcmNavigator(AP_HardwareAbstractionLayer * hal) : AP_Navigator(hal), _dcm(), _imuOffsetAddress(0) { // if orientation equal to front, store as front /** * rangeFinder is assigned values based on orientation which * is specified in ArduPilotOne.pde. */ for (uint8_t i = 0; i < _hal-> rangeFinders.getSize(); i++) { if (_hal->rangeFinders[i] == NULL) continue; if (_hal->rangeFinders[i]->orientation_x == 0 && _hal->rangeFinders[i]->orientation_y == 0 && _hal->rangeFinders[i]->orientation_z == 1) _rangeFinderDown = _hal->rangeFinders[i]; } if (_hal->getMode() == MODE_LIVE) { if (_hal->adc) _hal->imu = new AP_IMU_Oilpan(_hal->adc, k_sensorCalib); if (_hal->imu) _dcm = new AP_DCM(_hal->imu, _hal->gps, _hal->compass); if (_hal->compass) { _dcm->set_compass(_hal->compass); } } } virtual void calibrate() { AP_Navigator::calibrate(); // TODO: handle cold/warm restart if (_hal->imu) { _hal->imu->init(IMU::COLD_START,delay); } } virtual void updateFast(float dt) { if (_hal->getMode() != MODE_LIVE) return; setTimeStamp(micros()); // if running in live mode, record new time stamp //_hal->debug->println_P(PSTR("nav loop")); /** * The altitued is read off the barometer by implementing the following formula: * altitude (in m) = 44330*(1-(p/po)^(1/5.255)), * where, po is pressure in Pa at sea level (101325 Pa). * See http://www.sparkfun.com/tutorials/253 or type this formula * in a search engine for more information. * altInt contains the altitude in meters. */ if (_hal->baro) { if (_rangeFinderDown != NULL && _rangeFinderDown->distance <= 695) setAlt(_rangeFinderDown->distance); else { float tmp = (_hal->baro->Press / 101325.0); tmp = pow(tmp, 0.190295); //setAlt(44330 * (1.0 - tmp)); //sets the altitude in meters XXX wrong, baro reads 0 press setAlt(0.0); } } // dcm class for attitude if (_dcm) { _dcm->update_DCM(); setRoll(_dcm->roll); setPitch(_dcm->pitch); setYaw(_dcm->yaw); setRollRate(_dcm->get_gyro().x); setPitchRate(_dcm->get_gyro().y); setYawRate(_dcm->get_gyro().z); /* * accel/gyro debug */ /* Vector3f accel = _hal->imu->get_accel(); Vector3f gyro = _hal->imu->get_gyro(); Serial.printf_P(PSTR("accel: %f %f %f gyro: %f %f %f\n"), accel.x,accel.y,accel.z,gyro.x,gyro.y,gyro.z); */ } } virtual void updateSlow(float dt) { if (_hal->getMode() != MODE_LIVE) return; setTimeStamp(micros()); // if running in live mode, record new time stamp if (_hal->gps) { _hal->gps->update(); updateGpsLight(); if (_hal->gps->fix && _hal->gps->new_data) { setLat_degInt(_hal->gps->latitude); setLon_degInt(_hal->gps->longitude); setAlt_intM(_hal->gps->altitude * 10); // gps in cm, intM in mm setGroundSpeed(_hal->gps->ground_speed / 100.0); // gps is in cm/s } } if (_hal->compass) { _hal->compass->read(); _hal->compass->calculate(getRoll(), getPitch()); _hal->compass->null_offsets(_dcm->get_dcm_matrix()); } } void updateGpsLight(void) { // GPS LED on if we have a fix or Blink GPS LED if we are receiving data // --------------------------------------------------------------------- static bool GPS_light = false; switch (_hal->gps->status()) { case (2): //digitalWrite(C_LED_PIN, HIGH); //Turn LED C on when gps has valid fix. break; case (1): if (_hal->gps->valid_read == true) { GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock if (GPS_light) { digitalWrite(_hal->cLedPin, LOW); } else { digitalWrite(_hal->cLedPin, HIGH); } _hal->gps->valid_read = false; } break; default: digitalWrite(_hal->cLedPin, LOW); break; } } }; } // namespace apo #endif // AP_Navigator_H // vim:ts=4:sw=4:expandtab