/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if CONFIG_HAL_BOARD == HAL_BOARD_QURT #include "AP_HAL_QURT.h" #include "Scheduler.h" #include #include #include #include #include #include #include #include #include #include "UARTDriver.h" //#include "AnalogIn.h" #include "Storage.h" #include "RCOutput.h" #include using namespace QURT; extern const AP_HAL::HAL& hal; Scheduler::Scheduler() { } void Scheduler::init() { _main_task_pid = getpid(); // setup the timer thread - this will call tasks at 1kHz pthread_attr_t thread_attr; struct sched_param param; pthread_attr_init(&thread_attr); pthread_attr_setstacksize(&thread_attr, 40960); param.sched_priority = APM_TIMER_PRIORITY; (void)pthread_attr_setschedparam(&thread_attr, ¶m); pthread_create(&_timer_thread_ctx, &thread_attr, &Scheduler::_timer_thread, this); // the UART thread runs at a medium priority pthread_attr_init(&thread_attr); pthread_attr_setstacksize(&thread_attr, 40960); param.sched_priority = APM_UART_PRIORITY; (void)pthread_attr_setschedparam(&thread_attr, ¶m); pthread_create(&_uart_thread_ctx, &thread_attr, &Scheduler::_uart_thread, this); // the IO thread runs at lower priority pthread_attr_init(&thread_attr); pthread_attr_setstacksize(&thread_attr, 40960); param.sched_priority = APM_IO_PRIORITY; (void)pthread_attr_setschedparam(&thread_attr, ¶m); pthread_create(&_io_thread_ctx, &thread_attr, &Scheduler::_io_thread, this); } void Scheduler::delay_microseconds(uint16_t usec) { //pthread_yield(); usleep(usec); } void Scheduler::delay(uint16_t ms) { if (in_timerprocess()) { ::printf("ERROR: delay() from timer process\n"); return; } uint64_t start = AP_HAL::micros64(); uint64_t now; while (((now=AP_HAL::micros64()) - start)/1000 < ms) { delay_microseconds(1000); if (_min_delay_cb_ms <= ms) { if (_delay_cb) { _delay_cb(); } } } } void Scheduler::register_delay_callback(AP_HAL::Proc proc, uint16_t min_time_ms) { _delay_cb = proc; _min_delay_cb_ms = min_time_ms; } void Scheduler::register_timer_process(AP_HAL::MemberProc proc) { for (uint8_t i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] == proc) { return; } } if (_num_timer_procs < QURT_SCHEDULER_MAX_TIMER_PROCS) { _timer_proc[_num_timer_procs] = proc; _num_timer_procs++; } else { hal.console->printf("Out of timer processes\n"); } } void Scheduler::register_io_process(AP_HAL::MemberProc proc) { for (uint8_t i = 0; i < _num_io_procs; i++) { if (_io_proc[i] == proc) { return; } } if (_num_io_procs < QURT_SCHEDULER_MAX_TIMER_PROCS) { _io_proc[_num_io_procs] = proc; _num_io_procs++; } else { hal.console->printf("Out of IO processes\n"); } } void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us) { _failsafe = failsafe; } void Scheduler::suspend_timer_procs() { _timer_suspended = true; } void Scheduler::resume_timer_procs() { _timer_suspended = false; if (_timer_event_missed == true) { _run_timers(false); _timer_event_missed = false; } } void Scheduler::reboot(bool hold_in_bootloader) { HAP_PRINTF("**** REBOOT REQUESTED ****"); usleep(2000000); exit(1); } void Scheduler::_run_timers(bool called_from_timer_thread) { if (_in_timer_proc) { return; } _in_timer_proc = true; if (!_timer_suspended) { // now call the timer based drivers for (int i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i]) { _timer_proc[i](); } } } else if (called_from_timer_thread) { _timer_event_missed = true; } // and the failsafe, if one is setup if (_failsafe != NULL) { _failsafe(); } // process analog input // ((QURTAnalogIn *)hal.analogin)->_timer_tick(); _in_timer_proc = false; } extern bool qurt_ran_overtime; void *Scheduler::_timer_thread(void *arg) { Scheduler *sched = (Scheduler *)arg; uint32_t last_ran_overtime = 0; while (!sched->_hal_initialized) { sched->delay_microseconds(1000); } while (true) { sched->delay_microseconds(1000); // run registered timers sched->_run_timers(true); // process any pending RC output requests ((RCOutput *)hal.rcout)->timer_update(); if (qurt_ran_overtime && AP_HAL::millis() - last_ran_overtime > 2000) { last_ran_overtime = AP_HAL::millis(); printf("Overtime in task %d\n", (int)AP_Scheduler::current_task); hal.console->printf("Overtime in task %d\n", (int)AP_Scheduler::current_task); } } return NULL; } void Scheduler::_run_io(void) { if (_in_io_proc) { return; } _in_io_proc = true; if (!_timer_suspended) { // now call the IO based drivers for (int i = 0; i < _num_io_procs; i++) { if (_io_proc[i]) { _io_proc[i](); } } } _in_io_proc = false; } void *Scheduler::_uart_thread(void *arg) { Scheduler *sched = (Scheduler *)arg; while (!sched->_hal_initialized) { sched->delay_microseconds(1000); } while (true) { sched->delay_microseconds(1000); // process any pending serial bytes //((UARTDriver *)hal.uartA)->timer_tick(); ((UARTDriver *)hal.uartB)->timer_tick(); ((UARTDriver *)hal.uartC)->timer_tick(); ((UARTDriver *)hal.uartD)->timer_tick(); ((UARTDriver *)hal.uartE)->timer_tick(); } return NULL; } void *Scheduler::_io_thread(void *arg) { Scheduler *sched = (Scheduler *)arg; while (!sched->_hal_initialized) { sched->delay_microseconds(1000); } while (true) { sched->delay_microseconds(1000); // run registered IO processes sched->_run_io(); } return NULL; } bool Scheduler::in_timerprocess() { return getpid() != _main_task_pid; } void Scheduler::system_initialized() { if (_initialized) { AP_HAL::panic("PANIC: scheduler::system_initialized called" "more than once"); } _initialized = true; } void Scheduler::hal_initialized(void) { HAP_PRINTF("HAL is initialised"); _hal_initialized = true; } #endif