/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include "AP_MotorsHeli_RSC.h" #include #include // default main rotor speed (ch8 out) as a number from 0 ~ 100 #define AP_MOTORS_HELI_RSC_SETPOINT 70 // default main rotor critical speed #define AP_MOTORS_HELI_RSC_CRITICAL 50 // RSC output defaults #define AP_MOTORS_HELI_RSC_IDLE_DEFAULT 0 // default main rotor ramp up time in seconds #define AP_MOTORS_HELI_RSC_RAMP_TIME 1 // 1 second to ramp output to main rotor ESC to setpoint #define AP_MOTORS_HELI_RSC_RUNUP_TIME 10 // 10 seconds for rotor to reach full speed // Throttle Curve Defaults #define AP_MOTORS_HELI_RSC_THRCRV_0_DEFAULT 25 #define AP_MOTORS_HELI_RSC_THRCRV_25_DEFAULT 32 #define AP_MOTORS_HELI_RSC_THRCRV_50_DEFAULT 38 #define AP_MOTORS_HELI_RSC_THRCRV_75_DEFAULT 50 #define AP_MOTORS_HELI_RSC_THRCRV_100_DEFAULT 100 // RSC governor defaults #define AP_MOTORS_HELI_RSC_GOVERNOR_RANGE_DEFAULT 100 extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_MotorsHeli_RSC::var_info[] = { // @Param: SETPOINT // @DisplayName: External Motor Governor Setpoint // @Description: Throttle (HeliRSC Servo) output in percent to the external motor governor when motor interlock enabled (throttle hold off). // @Range: 0 100 // @Units: % // @Increment: 1 // @User: Standard AP_GROUPINFO("SETPOINT", 1, AP_MotorsHeli_RSC, _rsc_setpoint, AP_MOTORS_HELI_RSC_SETPOINT), // @Param: MODE // @DisplayName: Rotor Speed Control Mode // @Description: Selects the type of rotor speed control used to determine throttle output to the HeliRSC servo channel when motor interlock is enabled (throttle hold off). RC Passthrough sends the input from the RC Motor Interlock channel as throttle output. External Gov SetPoint sends the RSC SetPoint parameter value as throttle output. Throttle Curve uses the 5 point throttle curve to determine throttle output based on the collective output. AutoThrottle requires a rotor speed sensor, contains an advanced autothrottle governor and is primarily for piston and turbine engines. WARNING: Throttle ramp time and throttle curve MUST be tuned properly using Throttle Curve mode before using AutoThrottle // @Values: 1:RC Passthrough, 2:External Gov SetPoint, 3:Throttle Curve, 4:AutoThrottle // @User: Standard AP_GROUPINFO("MODE", 2, AP_MotorsHeli_RSC, _rsc_mode, (int8_t)ROTOR_CONTROL_MODE_PASSTHROUGH), // @Param: RAMP_TIME // @DisplayName: Throttle Ramp Time // @Description: Time in seconds for throttle output (HeliRSC servo) to ramp from ground idle (RSC_IDLE) to flight idle throttle setting when motor interlock is enabled (throttle hold off). // @Range: 0 60 // @Units: s // @User: Standard AP_GROUPINFO("RAMP_TIME", 3, AP_MotorsHeli_RSC, _ramp_time, AP_MOTORS_HELI_RSC_RAMP_TIME), // @Param: RUNUP_TIME // @DisplayName: Rotor Runup Time // @Description: Actual time in seconds for the main rotor to reach full speed after motor interlock is enabled (throttle hold off). Must be at least one second longer than the Throttle Ramp Time that is set with RSC_RAMP_TIME. WARNING: For AutoThrottle users with piston and turbine engines it is VERY important to know how long it takes to warm up your engine and reach full rotor speed when throttle switch is turned ON. This timer should be set for at least the amount of time it takes to get your helicopter to full flight power, ready for takeoff. Failure to heed this warning could result in the auto-takeoff mode attempting to lift up into hover before the engine has reached full power, and subsequent loss of control // @Range: 0 60 // @Units: s // @User: Standard AP_GROUPINFO("RUNUP_TIME", 4, AP_MotorsHeli_RSC, _runup_time, AP_MOTORS_HELI_RSC_RUNUP_TIME), // @Param: CRITICAL // @DisplayName: Critical Rotor Speed // @Description: Percentage of normal rotor speed where flight is no longer possible. However currently the rotor runup/rundown is estimated using the RSC_RUNUP_TIME parameter. Estimated rotor speed increases/decreases between 0 (rotor stopped) to 1 (rotor at normal speed) in the RSC_RUNUP_TIME in seconds. This parameter should be set so that the estimated rotor speed goes below critical in approximately 3 seconds. So if you had a 10 second runup time then set RSC_CRITICAL to 70%. // @Range: 0 100 // @Units: % // @Increment: 1 // @User: Standard AP_GROUPINFO("CRITICAL", 5, AP_MotorsHeli_RSC, _critical_speed, AP_MOTORS_HELI_RSC_CRITICAL), // @Param: IDLE // @DisplayName: Throttle Output at Idle // @Description: Throttle output (HeliRSC Servo) in percent while armed but motor interlock is disabled (throttle hold on). FOR COMBUSTION ENGINES. Sets the engine ground idle throttle percentage with clutch disengaged. This must be set to zero for electric helicopters under most situations. If the ESC has an autorotation window this can be set to keep the autorotation window open in the ESC. Consult the operating manual for your ESC to set it properly for this purpose // @Range: 0 50 // @Units: % // @Increment: 1 // @User: Standard AP_GROUPINFO("IDLE", 6, AP_MotorsHeli_RSC, _idle_output, AP_MOTORS_HELI_RSC_IDLE_DEFAULT), // @Param: SLEWRATE // @DisplayName: Throttle Slew Rate // @Description: This controls the maximum rate at which the throttle output (HeliRSC servo) can change, as a percentage per second. A value of 100 means the throttle can change over its full range in one second. A value of zero gives unlimited slew rate. // @Range: 0 500 // @Increment: 10 // @User: Standard AP_GROUPINFO("SLEWRATE", 7, AP_MotorsHeli_RSC, _power_slewrate, 0), // @Param: THRCRV_0 // @DisplayName: Throttle Curve at 0% Coll // @Description: Sets the throttle output (HeliRSC servo) in percent for the throttle curve at the minimum collective pitch position. The 0 percent collective is defined by H_COL_MIN. Example: if the setup has -2 degree to +10 degree collective pitch setup, this setting would correspond to -2 degree of pitch. // @Range: 0 100 // @Units: % // @Increment: 1 // @User: Standard AP_GROUPINFO("THRCRV_0", 8, AP_MotorsHeli_RSC, _thrcrv[0], AP_MOTORS_HELI_RSC_THRCRV_0_DEFAULT), // @Param: THRCRV_25 // @DisplayName: Throttle Curve at 25% Coll // @Description: Sets the throttle output (HeliRSC servo) in percent for the throttle curve at 25% of full collective travel where he 0 percent collective is defined by H_COL_MIN and 100 percent collective is defined by H_COL_MAX. Example: if the setup has -2 degree to +10 degree collective pitch setup, the total range is 12 degrees. 25% of 12 degrees is 3 degrees, so this setting would correspond to +1 degree of pitch. // @Range: 0 100 // @Units: % // @Increment: 1 // @User: Standard AP_GROUPINFO("THRCRV_25", 9, AP_MotorsHeli_RSC, _thrcrv[1], AP_MOTORS_HELI_RSC_THRCRV_25_DEFAULT), // @Param: THRCRV_50 // @DisplayName: Throttle Curve at 50% Coll // @Description: Sets the throttle output (HeliRSC servo) in percent for the throttle curve at 50% of full collective travel where he 0 percent collective is defined by H_COL_MIN and 100 percent collective is defined by H_COL_MAX. Example: if the setup has -2 degree to +10 degree collective pitch setup, the total range is 12 degrees. 50% of 12 degrees is 6 degrees, so this setting would correspond to +4 degree of pitch. // @Range: 0 100 // @Units: % // @Increment: 1 // @User: Standard AP_GROUPINFO("THRCRV_50", 10, AP_MotorsHeli_RSC, _thrcrv[2], AP_MOTORS_HELI_RSC_THRCRV_50_DEFAULT), // @Param: THRCRV_75 // @DisplayName: Throttle Curve at 75% Coll // @Description: Sets the throttle output (HeliRSC servo) in percent for the throttle curve at 75% of full collective travel where he 0 percent collective is defined by H_COL_MIN and 100 percent collective is defined by H_COL_MAX. Example: if the setup has -2 degree to +10 degree collective pitch setup, the total range is 12 degrees. 75% of 12 degrees is 9 degrees, so this setting would correspond to +7 degree of pitch. // @Range: 0 100 // @Units: % // @Increment: 1 // @User: Standard AP_GROUPINFO("THRCRV_75", 11, AP_MotorsHeli_RSC, _thrcrv[3], AP_MOTORS_HELI_RSC_THRCRV_75_DEFAULT), // @Param: THRCRV_100 // @DisplayName: Throttle Curve at 100% Coll // @Description: Sets the throttle output (HeliRSC servo) in percent for the throttle curve at the minimum collective pitch position. The 100 percent collective is defined by H_COL_MAX. Example: if the setup has -2 degree to +10 degree collective pitch setup, this setting would correspond to +10 degree of pitch. // @Range: 0 100 // @Units: % // @Increment: 1 // @User: Standard AP_GROUPINFO("THRCRV_100", 12, AP_MotorsHeli_RSC, _thrcrv[4], AP_MOTORS_HELI_RSC_THRCRV_100_DEFAULT), // Indices 13 thru 16 have been re-assigned and should not be used in the future // @Param: GOV_RANGE // @DisplayName: Governor Operational Range // @Description: RPM range +/- governor rpm reference setting where governor is operational. If speed sensor fails or rpm falls outside of this range, the governor will disengage and return to throttle curve. Recommended range is 100 // @Range: 50 200 // @Units: RPM // @Increment: 10 // @User: Standard AP_GROUPINFO("GOV_RANGE", 17, AP_MotorsHeli_RSC, _governor_range, AP_MOTORS_HELI_RSC_GOVERNOR_RANGE_DEFAULT), // Index 18 was renamed from AROT_PCT to AROT_IDLE // @Param: CLDWN_TIME // @DisplayName: Cooldown Time // @Description: Will provide a fast idle for engine cooldown by raising the Ground Idle speed setting by 50% for the number of seconds the timer is set for. A setting of zero disables the fast idle. This feature will only apply after the runup complete has been declared. This will not extend the time before ground idle is declared, which triggers engine shutdown for autonomous landings. // @Range: 0 120 // @Units: s // @Increment: 1 // @User: Standard AP_GROUPINFO("CLDWN_TIME", 19, AP_MotorsHeli_RSC, _cooldown_time, 0), // @Param: GOV_COMP // @DisplayName: Governor Torque Compensator // @Description: Adjusts the autothrottle governor torque compensator that determines how fast the governor will adjust the base torque reference to compensate for changes in density altitude. If RPM is low or high by more than 2-5 RPM, increase this setting by 1% at a time until the governor speed matches your RPM setting. Setting the compensator too high can result in surging and throttle "hunting". Do not make large adjustments at one time // @Range: 0 70 // @Units: % // @Increment: 0.1 // @User: Standard AP_GROUPINFO("GOV_COMP", 20, AP_MotorsHeli_RSC, _governor_compensator, 25), // @Param: GOV_DROOP // @DisplayName: Governor Droop Compensator // @Description: AutoThrottle governor droop response under load, normal settings of 0-50%. Higher value is quicker response to large speed changes due to load but may cause surging. Adjust this to be as aggressive as possible without getting surging or RPM over-run when the governor responds to large load changes on the rotor system // @Range: 0 100 // @Units: % // @Increment: 0.1 // @User: Standard AP_GROUPINFO("GOV_DROOP", 21, AP_MotorsHeli_RSC, _governor_droop_response, 25), // @Param: GOV_FF // @DisplayName: Governor Feedforward // @Description: Feedforward governor gain to throttle response during sudden loading/unloading of the rotor system. If RPM drops excessively during full collective climb with the droop response set correctly, increase the governor feedforward. // @Range: 0 100 // @Units: % // @Increment: 0.1 // @User: Standard AP_GROUPINFO("GOV_FF", 22, AP_MotorsHeli_RSC, _governor_ff, 50), // @Param: GOV_RPM // @DisplayName: Rotor RPM Setting // @Description: Main rotor RPM that governor maintains when engaged // @Range: 800 3500 // @Units: RPM // @Increment: 10 // @User: Standard AP_GROUPINFO("GOV_RPM", 23, AP_MotorsHeli_RSC, _governor_rpm, 1500), // @Param: GOV_TORQUE // @DisplayName: Governor Torque Limiter // @Description: Adjusts the engine's percentage of torque rise on autothrottle during ramp-up to governor speed. The torque rise will determine how fast the rotor speed will ramp up when rotor speed reaches 50% of the rotor RPM setting. The sequence of events engaging the governor is as follows: Throttle ramp time will engage the clutch and start the main rotor turning. The collective should be at flat pitch and the throttle curve set to provide at least 50% of normal RPM at flat pitch. The autothrottle torque limiter will automatically activate and start accelerating the main rotor. If the autothrottle consistently fails to accelerate the main rotor during ramp-in due to engine tune or other factors, then increase the torque limiter setting. NOTE: throttle ramp time and throttle curve should be tuned using RSC_MODE Throttle Curve before using RSC_MODE AutoThrottle // @Range: 10 60 // @Units: % // @Increment: 1 // @User: Standard AP_GROUPINFO("GOV_TORQUE", 24, AP_MotorsHeli_RSC, _governor_torque, 30), // 25 was AROT_ENG_T, has been moved to AROT_RAMP in RSC autorotation sub group // 26 was AROT_MN_EN, moved to H_RSC_AROT_ENBL in RSC autorotation sub group // 27 was AROT_IDLE, moved to RSC autorotation sub group AP_GROUPEND }; // init_servo - servo initialization on start-up void AP_MotorsHeli_RSC::init_servo() { // setup RSC on specified channel by default SRV_Channels::set_aux_channel_default(_aux_fn, _default_channel); } // set_power_output_range // TODO: Look at possibly calling this at a slower rate. Doesn't need to be called every cycle. void AP_MotorsHeli_RSC::set_throttle_curve() { float thrcrv[5]; // Ensure user inputs are within parameter limits // Scale throttle curve parameters for (uint8_t i = 0; i < 5; i++) { thrcrv[i] = constrain_float(_thrcrv[i] * 0.01f, 0.0f, 1.0f); } // Calculate the spline polynomials for the throttle curve splinterp5(thrcrv,_thrcrv_poly); } // output - update value to send to ESC/Servo void AP_MotorsHeli_RSC::output(RotorControlState state) { // Store rsc state for logging _rsc_state = state; // _rotor_RPM available to the RSC output #if AP_RPM_ENABLED const AP_RPM *rpm = AP_RPM::get_singleton(); if (rpm != nullptr) { if (!rpm->get_rpm(0, _rotor_rpm)) { // No valid RPM data _rotor_rpm = -1; } } else { // No RPM because pointer is null _rotor_rpm = -1; } #else _rotor_rpm = -1; #endif float dt; uint64_t now = AP_HAL::micros64(); float last_control_output = _control_output; if (_last_update_us == 0) { _last_update_us = now; dt = 0.001f; } else { dt = 1.0e-6f * (now - _last_update_us); _last_update_us = now; } switch (state) { case RotorControlState::STOP: // set rotor ramp to decrease speed to zero, this happens instantly inside update_rotor_ramp() update_rotor_ramp(0.0f, dt); // control output forced to zero _control_output = 0.0f; // governor is forced to disengage status and reset outputs governor_reset(); _autothrottle = false; _governor_fault = false; //turbine start flag on _starting = true; // ensure we always deactivate the autorotation state if we disarm autorotation.set_active(false, true); // ensure _idle_throttle not set to invalid value _idle_throttle = get_idle_output(); // reset fast idle timer _fast_idle_timer = 0.0; break; case RotorControlState::IDLE: // set rotor ramp to decrease speed to zero update_rotor_ramp(0.0f, dt); // set rotor control speed to engine idle and ensure governor is reset, if used governor_reset(); _autothrottle = false; _governor_fault = false; // turbine start sequence if (_turbine_start && _starting == true ) { _idle_throttle += 0.001f; if (_control_output >= 1.0f) { _idle_throttle = get_idle_output(); GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Turbine startup"); _starting = false; } _control_output = _idle_throttle; break; } // all other idle throttle functions below this require idle throttle to be reset to H_RSC_IDLE on each call _idle_throttle = get_idle_output(); // check if we need to use autorotation idle throttle if (autorotation.get_idle_throttle(_idle_throttle)) { // if we are here then we are autorotating _control_output = _idle_throttle; break; } // check if we need to use engine cooldown if (_fast_idle_timer > 0.0) { // running at fast idle for engine cool down _idle_throttle *= 1.5; _fast_idle_timer -= dt; } _control_output = _idle_throttle; break; case RotorControlState::ACTIVE: // set main rotor ramp to increase to full speed update_rotor_ramp(1.0f, dt); // set fast idle timer so next time RSC goes to idle, the cooldown timer starts if (_cooldown_time.get() > 0) { _fast_idle_timer = _cooldown_time.get(); } // ensure _idle_throttle not set to invalid value due to premature switch out of turbine start if (_starting) { _idle_throttle = get_idle_output(); } // if turbine engine started without using start sequence, set starting flag just to be sure it can't be triggered when back in idle _starting = false; if ((_control_mode == ROTOR_CONTROL_MODE_PASSTHROUGH) || (_control_mode == ROTOR_CONTROL_MODE_SETPOINT)) { // set control rotor speed to ramp slewed value between idle and desired speed _control_output = _idle_throttle + (_rotor_ramp_output * (_desired_speed - _idle_throttle)); } else if (_control_mode == ROTOR_CONTROL_MODE_THROTTLECURVE) { // throttle output from throttle curve based on collective position float throttlecurve = calculate_throttlecurve(_collective_in); _control_output = _idle_throttle + (_rotor_ramp_output * (throttlecurve - _idle_throttle)); } else if (_control_mode == ROTOR_CONTROL_MODE_AUTOTHROTTLE) { autothrottle_run(); } break; } // update rotor speed run-up estimate update_rotor_runup(dt); if (_power_slewrate > 0) { // implement slew rate for throttle float max_delta = dt * _power_slewrate * 0.01f; _control_output = constrain_float(_control_output, last_control_output-max_delta, last_control_output+max_delta); } // output to rsc servo write_rsc(_control_output); } // update_rotor_ramp - slews rotor output scalar between 0 and 1, outputs float scalar to _rotor_ramp_output void AP_MotorsHeli_RSC::update_rotor_ramp(float rotor_ramp_input, float dt) { float ramp_time = MAX(float(_ramp_time.get()), 1.0); // check if we need to use the bailout ramp up rate for the autorotation case if (autorotation.bailing_out()) { ramp_time = autorotation.get_bailout_ramp(); } // ramp output upwards towards target if (_rotor_ramp_output < rotor_ramp_input) { _rotor_ramp_output += (dt / ramp_time); // Do not allow output to exceed requested input _rotor_ramp_output = MIN(_rotor_ramp_output, rotor_ramp_input); } else { // ramping down happens instantly _rotor_ramp_output = rotor_ramp_input; } } // update_rotor_runup - function to slew rotor runup scalar, outputs float scalar to _rotor_runup_ouptut void AP_MotorsHeli_RSC::update_rotor_runup(float dt) { float runup_time = _runup_time; // sanity check runup time runup_time = MAX(_ramp_time+1,runup_time); // adjust rotor runup when in autorotation or bailing out if (in_autorotation()) { runup_time = autorotation.get_runup_time(); } // protect against divide by zero runup_time = MAX(1,runup_time); // ramp speed estimate towards control out float runup_increment = dt / runup_time; if (_rotor_runup_output < _rotor_ramp_output) { _rotor_runup_output += runup_increment; if (_rotor_runup_output > _rotor_ramp_output) { _rotor_runup_output = _rotor_ramp_output; } } else { _rotor_runup_output -= runup_increment; if (_rotor_runup_output < _rotor_ramp_output) { _rotor_runup_output = _rotor_ramp_output; } } // if in autorotation, don't let rotor_runup_output go less than critical speed to keep // runup complete flag from being set to false if (in_autorotation() && !rotor_speed_above_critical()) { _rotor_runup_output = get_critical_speed(); } // update run-up complete flag // if control mode is disabled, then run-up complete always returns true if ( _control_mode == ROTOR_CONTROL_MODE_DISABLED ) { _runup_complete = true; return; } // if rotor ramp and runup are both at full speed, then run-up has been completed if (!_runup_complete && (_rotor_ramp_output >= 1.0f) && (_rotor_runup_output >= 1.0f)) { _runup_complete = true; } // if rotor speed is less than critical speed, then run-up is not complete // this will prevent the case where the target rotor speed is less than critical speed if (_runup_complete && !rotor_speed_above_critical()) { _runup_complete = false; } // if rotor estimated speed is zero, then spooldown has been completed if (_rotor_runup_output <= 0.0f) { _spooldown_complete = true; } else { _spooldown_complete = false; } } // write_rsc - outputs pwm onto output rsc channel // servo_out parameter is of the range 0 ~ 1 void AP_MotorsHeli_RSC::write_rsc(float servo_out) { if (_control_mode == ROTOR_CONTROL_MODE_DISABLED) { // do not do servo output to avoid conflicting with other output on the channel // ToDo: We should probably use RC_Channel_Aux to avoid this problem return; } else { SRV_Channels::set_output_scaled(_aux_fn, servo_out * 1000); } } // Return mask of output channels which the RSC is outputting on uint32_t AP_MotorsHeli_RSC::get_output_mask() const { if (_control_mode == ROTOR_CONTROL_MODE_DISABLED) { return 0; } return SRV_Channels::get_output_channel_mask(_aux_fn); } // calculate_throttlecurve - uses throttle curve and collective input to determine throttle setting float AP_MotorsHeli_RSC::calculate_throttlecurve(float collective_in) { const float inpt = collective_in * 4.0f + 1.0f; uint8_t idx = constrain_int16(int8_t(collective_in * 4), 0, 3); const float a = inpt - (idx + 1.0f); const float b = (idx + 1.0f) - inpt + 1.0f; float throttle = _thrcrv_poly[idx][0] * a + _thrcrv_poly[idx][1] * b + _thrcrv_poly[idx][2] * (powf(a,3.0f) - a) / 6.0f + _thrcrv_poly[idx][3] * (powf(b,3.0f) - b) / 6.0f; throttle = constrain_float(throttle, 0.0f, 1.0f); return throttle; } // autothrottle_run - calculate throttle output for governor controlled throttle void AP_MotorsHeli_RSC::autothrottle_run() { float throttlecurve = calculate_throttlecurve(_collective_in); float const torque_ref_error_rpm = 2.0f; // if the desired governor RPM is zero, use the throttle curve only and exit if (_governor_rpm == 0) { _control_output = _idle_throttle + (_rotor_ramp_output * (throttlecurve - _idle_throttle)); return; } // autothrottle main power loop with governor if (_governor_engage && !_governor_fault) { // calculate droop - difference between actual and desired speed float governor_droop = ((float)_governor_rpm - _rotor_rpm) * _governor_droop_response * 0.0001f; _governor_output = governor_droop + ((throttlecurve - _governor_torque_reference) * _governor_ff * 0.01); if (_rotor_rpm < ((float)_governor_rpm - torque_ref_error_rpm)) { _governor_torque_reference += get_governor_compensator(); // torque compensator } else if (_rotor_rpm > ((float)_governor_rpm + torque_ref_error_rpm)) { _governor_torque_reference -= get_governor_compensator(); } // throttle output uses droop + torque compensation to maintain proper rotor speed _control_output = constrain_float((_governor_torque_reference + _governor_output), (get_idle_output() * 1.5f), 1.0f); // governor and speed sensor fault detection - must maintain RPM within governor range // speed fault detector will allow a fault to persist for 200 contiguous governor updates // this is failsafe for bad speed sensor or severely mis-adjusted governor if ((_rotor_rpm <= (_governor_rpm - _governor_range)) || (_rotor_rpm >= (_governor_rpm + _governor_range))) { _governor_fault_count++; if (_governor_fault_count > 200) { governor_reset(); _governor_fault = true; if (_rotor_rpm >= (_governor_rpm + _governor_range)) { GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Governor Fault: Rotor Overspeed"); } else { GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Governor Fault: Rotor Underspeed"); } } } else { _governor_fault_count = 0; // reset fault count if the fault doesn't persist } } else if (!_governor_engage && !_governor_fault) { // if governor is not engaged and rotor is overspeeding by more than governor range due to // misconfigured throttle curve or stuck throttle, set a fault and governor will not operate if (_rotor_rpm > (_governor_rpm + _governor_range) && !autorotation.bailing_out()) { _governor_fault = true; governor_reset(); GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Governor Fault: Rotor Overspeed"); _governor_output = 0.0f; // when performing power recovery from autorotation, this waits for user to load rotor in order to // engage the governor } else if (_rotor_rpm > _governor_rpm && autorotation.bailing_out()) { _governor_output = 0.0f; // torque rise limiter accelerates rotor to the reference speed // this limits the max torque rise the governor could call for from the main power loop } else if (_rotor_rpm >= (_governor_rpm * 0.5f)) { float torque_limit = (get_governor_torque() * get_governor_torque()); _governor_output = (_rotor_rpm / (float)_governor_rpm) * torque_limit; if (_rotor_rpm >= ((float)_governor_rpm - torque_ref_error_rpm)) { _governor_engage = true; _autothrottle = true; GCS_SEND_TEXT(MAV_SEVERITY_NOTICE, "Governor Engaged"); } } else { // temporary use of throttle curve and ramp timer to accelerate rotor to governor min torque rise speed _governor_output = 0.0f; } _control_output = constrain_float(_idle_throttle + (_rotor_ramp_output * (throttlecurve + _governor_output - _idle_throttle)), 0.0f, 1.0f); _governor_torque_reference = _control_output; // increment torque setting to be passed to main power loop } else { // failsafe - if governor has faulted use throttle curve _control_output = _idle_throttle + (_rotor_ramp_output * (throttlecurve - _idle_throttle)); } } // governor_reset - disengages governor and resets outputs void AP_MotorsHeli_RSC::governor_reset() { _governor_output = 0.0f; _governor_torque_reference = 0.0f; _governor_engage = false; _governor_fault_count = 0; // reset fault count when governor reset } #if HAL_LOGGING_ENABLED // Write a helicopter motors packet void AP_MotorsHeli_RSC::write_log(void) const { // @LoggerMessage: HRSC // @Description: Helicopter related messages // @Field: I: Instance, 0=Main, 1=Tail // @Field: TimeUS: Time since system startup // @Field: DRRPM: Desired rotor speed // @Field: ERRPM: Estimated rotor speed // @Field: Gov: Governor Output // @Field: Throt: Throttle output // @Field: Ramp: throttle ramp up // @Field: Stat: RSC state // Write to data flash log AP::logger().WriteStreaming("HRSC", "TimeUS,I,DRRPM,ERRPM,Gov,Throt,Ramp,Stat", "s#------", "F-------", "QBfffffB", AP_HAL::micros64(), _instance, get_desired_speed(), _rotor_runup_output, _governor_output, get_control_output(), _rotor_ramp_output, uint8_t(_rsc_state)); } #endif // considered to be "in an autorotation" if active or bailing out bool AP_MotorsHeli_RSC::in_autorotation(void) const { return autorotation.active() || autorotation.bailing_out(); }