// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /// @file AP_IMU_INS.h /// @brief IMU driver on top of an AP_InertialSensor (INS) driver. // Provides offset calibration for for the gyro and accel. #ifndef __AP_IMU_INS_H__ #define __AP_IMU_INS_H__ #include "../AP_Common/AP_Common.h" #include "../AP_Math/AP_Math.h" #include "../AP_InertialSensor/AP_InertialSensor.h" #include #include "IMU.h" class AP_IMU_INS : public IMU { public: /// Constructor /// /// Saves the ADC pointer and constructs the calibration data variable. /// /// @param adc Pointer to the AP_ADC instance that is connected to the gyro and accelerometer. /// @param key The AP_Var::key value we will use when loading/saving calibration data. /// AP_IMU_INS(AP_InertialSensor *ins) : _ins(ins) { _product_id = AP_PRODUCT_ID_NONE; // set during hardware init } /// Do warm or cold start. /// /// @note For a partial-warmstart where e.g. the accelerometer calibration should be preserved /// but the gyro cal needs to be re-performed, start with ::init(WARM_START) to load the /// previous calibration settings, then force a re-calibration of the gyro with ::init_gyro. /// /// @param style Selects the initialisation style. /// COLD_START performs calibration of both the accelerometer and gyro. /// WARM_START loads accelerometer and gyro calibration from a previous cold start. /// virtual void init( Start_style style = COLD_START, void (*delay_cb)(unsigned long t) = delay, void (*flash_leds_cb)(bool on) = NULL, AP_PeriodicProcess * scheduler = NULL ); virtual void save(); virtual void init_accel(void (*delay_cb)(unsigned long t) = delay, void (*flash_leds_cb)(bool on) = NULL); virtual void init_gyro(void (*delay_cb)(unsigned long t) = delay, void (*flash_leds_cb)(bool on) = NULL); virtual bool update(void); virtual bool new_data_available(void); /// Get number of samples read from the sensors virtual uint16_t num_samples_available(void); // for jason virtual float gx() { return _sensor_cal[0]; } virtual float gy() { return _sensor_cal[1]; } virtual float gz() { return _sensor_cal[2]; } virtual float ax() { return _sensor_cal[3]; } virtual float ay() { return _sensor_cal[4]; } virtual float az() { return _sensor_cal[5]; } virtual void gx(const float v) { _sensor_cal[0] = v; } virtual void gy(const float v) { _sensor_cal[1] = v; } virtual void gz(const float v) { _sensor_cal[2] = v; } virtual void ax(const float v) { _sensor_cal[3] = v; } virtual void ay(const float v) { _sensor_cal[4] = v; } virtual void az(const float v) { _sensor_cal[5] = v; } virtual float get_gyro_drift_rate(void); private: AP_InertialSensor * _ins; ///< INS provides an axis and unit correct sensor source. virtual void _init_accel(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on) = NULL); ///< no-save implementation virtual void _init_gyro(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on) = NULL); ///< no-save implementation float _calibrated(uint8_t channel, float ins_value); // Gyro and Accelerometer calibration criteria // static const float _accel_total_cal_change = 4.0; static const float _accel_max_cal_offset = 250.0; }; #endif