// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- // // NMEA parser, adapted by Michael Smith from TinyGPS v9: // // TinyGPS - a small GPS library for Arduino providing basic NMEA parsing // Copyright (C) 2008-9 Mikal Hart // All rights reserved. // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // /// @file AP_GPS_NMEA.cpp /// @brief NMEA protocol parser /// /// This is a lightweight NMEA parser, derived originally from the /// TinyGPS parser by Mikal Hart. /// #include #include #include #include #include #include "AP_GPS_NMEA.h" // SiRF init messages ////////////////////////////////////////////////////////// // // Note that we will only see a SiRF in NMEA mode if we are explicitly configured // for NMEA. GPS_AUTO will try to set any SiRF unit to binary mode as part of // the autodetection process. // const prog_char AP_GPS_NMEA::_SiRF_init_string[] PROGMEM = "$PSRF103,0,0,1,1*25\r\n" // GGA @ 1Hz "$PSRF103,1,0,0,1*25\r\n" // GLL off "$PSRF103,2,0,0,1*26\r\n" // GSA off "$PSRF103,3,0,0,1*27\r\n" // GSV off "$PSRF103,4,0,1,1*20\r\n" // RMC off "$PSRF103,5,0,1,1*20\r\n" // VTG @ 1Hz "$PSRF103,6,0,0,1*22\r\n" // MSS off "$PSRF103,8,0,0,1*2C\r\n" // ZDA off "$PSRF151,1*3F\r\n" // WAAS on (not always supported) "$PSRF106,21*0F\r\n" // datum = WGS84 ""; // MediaTek init messages ////////////////////////////////////////////////////// // // Note that we may see a MediaTek in NMEA mode if we are connected to a non-DIYDrones // MediaTek-based GPS. // const prog_char AP_GPS_NMEA::_MTK_init_string[] PROGMEM = "$PMTK314,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0*28\r\n" // GGA & VTG once every fix "$PMTK330,0*2E\r\n" // datum = WGS84 "$PMTK313,1*2E\r\n" // SBAS on "$PMTK301,2*2E\r\n" // use SBAS data for DGPS ""; // ublox init messages ///////////////////////////////////////////////////////// // // Note that we will only see a ublox in NMEA mode if we are explicitly configured // for NMEA. GPS_AUTO will try to set any ublox unit to binary mode as part of // the autodetection process. // // We don't attempt to send $PUBX,41 as the unit must already be talking NMEA // and we don't know the baudrate. // const prog_char AP_GPS_NMEA::_ublox_init_string[] PROGMEM = "$PUBX,40,gga,0,1,0,0,0,0*7B\r\n" // GGA on at one per fix "$PUBX,40,vtg,0,1,0,0,0,0*7F\r\n" // VTG on at one per fix "$PUBX,40,rmc,0,0,0,0,0,0*67\r\n" // RMC off (XXX suppress other message types?) ""; // NMEA message identifiers //////////////////////////////////////////////////// // const char AP_GPS_NMEA::_gprmc_string[] PROGMEM = "GPRMC"; const char AP_GPS_NMEA::_gpgga_string[] PROGMEM = "GPGGA"; const char AP_GPS_NMEA::_gpvtg_string[] PROGMEM = "GPVTG"; // Convenience macros ////////////////////////////////////////////////////////// // #define DIGIT_TO_VAL(_x) (_x - '0') // Constructors //////////////////////////////////////////////////////////////// AP_GPS_NMEA::AP_GPS_NMEA(Stream *s) : GPS(s) { } // Public Methods ////////////////////////////////////////////////////////////// void AP_GPS_NMEA::init(enum GPS_Engine_Setting nav_setting) { BetterStream *bs = (BetterStream *)_port; // send the SiRF init strings bs->print_P((const prog_char_t *)_SiRF_init_string); // send the MediaTek init strings bs->print_P((const prog_char_t *)_MTK_init_string); // send the ublox init strings bs->print_P((const prog_char_t *)_ublox_init_string); idleTimeout = 1200; } bool AP_GPS_NMEA::read(void) { int16_t numc; bool parsed = false; numc = _port->available(); while (numc--) { if (_decode(_port->read())) { parsed = true; } } return parsed; } bool AP_GPS_NMEA::_decode(char c) { bool valid_sentence = false; switch (c) { case ',': // term terminators _parity ^= c; case '\r': case '\n': case '*': if (_term_offset < sizeof(_term)) { _term[_term_offset] = 0; valid_sentence = _term_complete(); } ++_term_number; _term_offset = 0; _is_checksum_term = c == '*'; return valid_sentence; case '$': // sentence begin _term_number = _term_offset = 0; _parity = 0; _sentence_type = _GPS_SENTENCE_OTHER; _is_checksum_term = false; _gps_data_good = false; return valid_sentence; } // ordinary characters if (_term_offset < sizeof(_term) - 1) _term[_term_offset++] = c; if (!_is_checksum_term) _parity ^= c; return valid_sentence; } // // internal utilities // int16_t AP_GPS_NMEA::_from_hex(char a) { if (a >= 'A' && a <= 'F') return a - 'A' + 10; else if (a >= 'a' && a <= 'f') return a - 'a' + 10; else return a - '0'; } uint32_t AP_GPS_NMEA::_parse_decimal() { char *p = _term; uint32_t ret = 100UL * atol(p); while (isdigit(*p)) ++p; if (*p == '.') { if (isdigit(p[1])) { ret += 10 * (p[1] - '0'); if (isdigit(p[2])) ret += p[2] - '0'; } } return ret; } uint32_t AP_GPS_NMEA::_parse_degrees() { char *p, *q; uint8_t deg = 0, min = 0; uint32_t frac_min = 0; int32_t ret = 0; // scan for decimal point or end of field for (p = _term; isdigit(*p); p++) ; q = _term; // convert degrees while ((p - q) > 2) { if (deg) deg *= 10; deg += DIGIT_TO_VAL(*q++); } // convert minutes while (p > q) { if (min) min *= 10; min += DIGIT_TO_VAL(*q++); } // convert fractional minutes // expect up to four digits, result is in // ten-thousandths of a minute if (*p == '.') { q = p + 1; for (int16_t i = 0; i < 5; i++) { frac_min = (int32_t)(frac_min * 10); if (isdigit(*q)) frac_min += *q++ - '0'; } } ret = (int32_t)deg * (int32_t)1000000UL + (int32_t)((min * 100000UL + frac_min) / 6UL); return ret; } // Processes a just-completed term // Returns true if new sentence has just passed checksum test and is validated bool AP_GPS_NMEA::_term_complete() { // handle the last term in a message if (_is_checksum_term) { uint8_t checksum = 16 * _from_hex(_term[0]) + _from_hex(_term[1]); if (checksum == _parity) { if (_gps_data_good) { switch (_sentence_type) { case _GPS_SENTENCE_GPRMC: time = _new_time; date = _new_date; latitude = _new_latitude * 10; // degrees*10e5 -> 10e7 longitude = _new_longitude * 10; // degrees*10e5 -> 10e7 ground_speed = _new_speed; ground_course = _new_course; fix = true; break; case _GPS_SENTENCE_GPGGA: altitude = _new_altitude; time = _new_time; latitude = _new_latitude * 10; // degrees*10e5 -> 10e7 longitude = _new_longitude * 10; // degrees*10e5 -> 10e7 num_sats = _new_satellite_count; hdop = _new_hdop; fix = true; break; case _GPS_SENTENCE_GPVTG: ground_speed = _new_speed; ground_course = _new_course; // VTG has no fix indicator, can't change fix status break; } } else { switch (_sentence_type) { case _GPS_SENTENCE_GPRMC: case _GPS_SENTENCE_GPGGA: // Only these sentences give us information about // fix status. fix = false; } } // we got a good message return true; } // we got a bad message, ignore it return false; } // the first term determines the sentence type if (_term_number == 0) { if (!strcmp_P(_term, _gprmc_string)) { _sentence_type = _GPS_SENTENCE_GPRMC; } else if (!strcmp_P(_term, _gpgga_string)) { _sentence_type = _GPS_SENTENCE_GPGGA; } else if (!strcmp_P(_term, _gpvtg_string)) { _sentence_type = _GPS_SENTENCE_GPVTG; // VTG may not contain a data qualifier, presume the solution is good // unless it tells us otherwise. _gps_data_good = true; } else { _sentence_type = _GPS_SENTENCE_OTHER; } return false; } // 32 = RMC, 64 = GGA, 96 = VTG if (_sentence_type != _GPS_SENTENCE_OTHER && _term[0]) { switch (_sentence_type + _term_number) { // operational status // case _GPS_SENTENCE_GPRMC + 2: // validity (RMC) _gps_data_good = _term[0] == 'A'; break; case _GPS_SENTENCE_GPGGA + 6: // Fix data (GGA) _gps_data_good = _term[0] > '0'; break; case _GPS_SENTENCE_GPVTG + 9: // validity (VTG) (we may not see this field) _gps_data_good = _term[0] != 'N'; break; case _GPS_SENTENCE_GPGGA + 7: // satellite count (GGA) _new_satellite_count = atol(_term); break; case _GPS_SENTENCE_GPGGA + 8: // HDOP (GGA) _new_hdop = _parse_decimal(); break; // time and date // case _GPS_SENTENCE_GPRMC + 1: // Time (RMC) case _GPS_SENTENCE_GPGGA + 1: // Time (GGA) _new_time = _parse_decimal(); break; case _GPS_SENTENCE_GPRMC + 9: // Date (GPRMC) _new_date = atol(_term); break; // location // case _GPS_SENTENCE_GPRMC + 3: // Latitude case _GPS_SENTENCE_GPGGA + 2: _new_latitude = _parse_degrees(); break; case _GPS_SENTENCE_GPRMC + 4: // N/S case _GPS_SENTENCE_GPGGA + 3: if (_term[0] == 'S') _new_latitude = -_new_latitude; break; case _GPS_SENTENCE_GPRMC + 5: // Longitude case _GPS_SENTENCE_GPGGA + 4: _new_longitude = _parse_degrees(); break; case _GPS_SENTENCE_GPRMC + 6: // E/W case _GPS_SENTENCE_GPGGA + 5: if (_term[0] == 'W') _new_longitude = -_new_longitude; break; case _GPS_SENTENCE_GPGGA + 9: // Altitude (GPGGA) _new_altitude = _parse_decimal(); break; // course and speed // case _GPS_SENTENCE_GPRMC + 7: // Speed (GPRMC) case _GPS_SENTENCE_GPVTG + 5: // Speed (VTG) _new_speed = (_parse_decimal() * 514) / 1000; // knots-> m/sec, approximiates * 0.514 break; case _GPS_SENTENCE_GPRMC + 8: // Course (GPRMC) case _GPS_SENTENCE_GPVTG + 1: // Course (VTG) _new_course = _parse_decimal(); break; } } return false; }