/* * location.cpp * Copyright (C) Andrew Tridgell 2011 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ /* * this module deals with calculations involving struct Location */ #include #include #include "AP_Math.h" #include "location.h" // scaling factor from 1e-7 degrees to meters at equater // == 1.0e-7 * DEG_TO_RAD * RADIUS_OF_EARTH #define LOCATION_SCALING_FACTOR 0.011131884502145034f // inverse of LOCATION_SCALING_FACTOR #define LOCATION_SCALING_FACTOR_INV 89.83204953368922f float longitude_scale(const struct Location &loc) { #if HAL_CPU_CLASS < HAL_CPU_CLASS_150 static int32_t last_lat; static float scale = 1.0; // don't optimise on faster CPUs. It causes some minor errors on Replay if (labs(last_lat - loc.lat) < 100000) { // we are within 0.01 degrees (about 1km) of the // same latitude. We can avoid the cos() and return // the same scale factor. return scale; } scale = cosf(loc.lat * 1.0e-7f * DEG_TO_RAD); scale = constrain_float(scale, 0.01f, 1.0f); last_lat = loc.lat; return scale; #else float scale = cosf(loc.lat * 1.0e-7f * DEG_TO_RAD); return constrain_float(scale, 0.01f, 1.0f); #endif } // return distance in meters between two locations float get_distance(const struct Location &loc1, const struct Location &loc2) { float dlat = (float)(loc2.lat - loc1.lat); float dlong = ((float)(loc2.lng - loc1.lng)) * longitude_scale(loc2); return norm(dlat, dlong) * LOCATION_SCALING_FACTOR; } // return distance in centimeters to between two locations uint32_t get_distance_cm(const struct Location &loc1, const struct Location &loc2) { return get_distance(loc1, loc2) * 100; } // return bearing in centi-degrees between two locations int32_t get_bearing_cd(const struct Location &loc1, const struct Location &loc2) { int32_t off_x = loc2.lng - loc1.lng; int32_t off_y = (loc2.lat - loc1.lat) / longitude_scale(loc2); int32_t bearing = 9000 + atan2f(-off_y, off_x) * 5729.57795f; if (bearing < 0) bearing += 36000; return bearing; } // see if location is past a line perpendicular to // the line between point1 and point2. If point1 is // our previous waypoint and point2 is our target waypoint // then this function returns true if we have flown past // the target waypoint bool location_passed_point(const struct Location &location, const struct Location &point1, const struct Location &point2) { return location_path_proportion(location, point1, point2) >= 1.0f; } /* return the proportion we are along the path from point1 to point2, along a line parallel to point1<->point2. This will be less than >1 if we have passed point2 */ float location_path_proportion(const struct Location &location, const struct Location &point1, const struct Location &point2) { Vector2f vec1 = location_diff(point1, point2); Vector2f vec2 = location_diff(point1, location); float dsquared = sq(vec1.x) + sq(vec1.y); if (dsquared < 0.001f) { // the two points are very close together return 1.0f; } return (vec1 * vec2) / dsquared; } /* * extrapolate latitude/longitude given bearing and distance * Note that this function is accurate to about 1mm at a distance of * 100m. This function has the advantage that it works in relative * positions, so it keeps the accuracy even when dealing with small * distances and floating point numbers */ void location_update(struct Location &loc, float bearing, float distance) { float ofs_north = cosf(radians(bearing))*distance; float ofs_east = sinf(radians(bearing))*distance; location_offset(loc, ofs_north, ofs_east); } /* * extrapolate latitude/longitude given distances north and east */ void location_offset(struct Location &loc, float ofs_north, float ofs_east) { if (!is_zero(ofs_north) || !is_zero(ofs_east)) { int32_t dlat = ofs_north * LOCATION_SCALING_FACTOR_INV; int32_t dlng = (ofs_east * LOCATION_SCALING_FACTOR_INV) / longitude_scale(loc); loc.lat += dlat; loc.lng += dlng; } } /* return the distance in meters in North/East plane as a N/E vector from loc1 to loc2 */ Vector2f location_diff(const struct Location &loc1, const struct Location &loc2) { return Vector2f((loc2.lat - loc1.lat) * LOCATION_SCALING_FACTOR, (loc2.lng - loc1.lng) * LOCATION_SCALING_FACTOR * longitude_scale(loc1)); } /* return true if lat and lng match. Ignores altitude and options */ bool locations_are_same(const struct Location &loc1, const struct Location &loc2) { return (loc1.lat == loc2.lat) && (loc1.lng == loc2.lng); } /* * convert invalid waypoint with useful data. return true if location changed */ bool location_sanitize(const struct Location &defaultLoc, struct Location &loc) { bool has_changed = false; // convert lat/lng=0 to mean current point if (loc.lat == 0 && loc.lng == 0) { loc.lat = defaultLoc.lat; loc.lng = defaultLoc.lng; has_changed = true; } // convert relative alt=0 to mean current alt if (loc.alt == 0 && loc.flags.relative_alt) { loc.flags.relative_alt = false; loc.alt = defaultLoc.alt; has_changed = true; } // limit lat/lng to appropriate ranges if (!check_latlng(loc)) { loc.lat = defaultLoc.lat; loc.lng = defaultLoc.lng; has_changed = true; } return has_changed; } /* print a int32_t lat/long in decimal degrees */ void print_latlon(AP_HAL::BetterStream *s, int32_t lat_or_lon) { int32_t dec_portion, frac_portion; int32_t abs_lat_or_lon = labs(lat_or_lon); // extract decimal portion (special handling of negative numbers to ensure we round towards zero) dec_portion = abs_lat_or_lon / 10000000UL; // extract fractional portion frac_portion = abs_lat_or_lon - dec_portion*10000000UL; // print output including the minus sign if( lat_or_lon < 0 ) { s->printf("-"); } s->printf("%ld.%07ld",(long)dec_portion,(long)frac_portion); } void wgsllh2ecef(const Vector3d &llh, Vector3d &ecef) { double d = WGS84_E * sin(llh[0]); double N = WGS84_A / sqrt(1. - d*d); ecef[0] = (N + llh[2]) * cos(llh[0]) * cos(llh[1]); ecef[1] = (N + llh[2]) * cos(llh[0]) * sin(llh[1]); ecef[2] = ((1 - WGS84_E*WGS84_E)*N + llh[2]) * sin(llh[0]); } void wgsecef2llh(const Vector3d &ecef, Vector3d &llh) { /* Distance from polar axis. */ const double p = sqrt(ecef[0]*ecef[0] + ecef[1]*ecef[1]); /* Compute longitude first, this can be done exactly. */ if (!is_zero(p)) llh[1] = atan2(ecef[1], ecef[0]); else llh[1] = 0; /* If we are close to the pole then convergence is very slow, treat this is a * special case. */ if (p < WGS84_A*1e-16) { llh[0] = copysign(M_PI_2, ecef[2]); llh[2] = fabs(ecef[2]) - WGS84_B; return; } /* Calculate some other constants as defined in the Fukushima paper. */ const double P = p / WGS84_A; const double e_c = sqrt(1. - WGS84_E*WGS84_E); const double Z = fabs(ecef[2]) * e_c / WGS84_A; /* Initial values for S and C correspond to a zero height solution. */ double S = Z; double C = e_c * P; /* Neither S nor C can be negative on the first iteration so * starting prev = -1 will not cause and early exit. */ double prev_C = -1; double prev_S = -1; double A_n, B_n, D_n, F_n; /* Iterate a maximum of 10 times. This should be way more than enough for all * sane inputs */ for (int i=0; i<10; i++) { /* Calculate some intermmediate variables used in the update step based on * the current state. */ A_n = sqrt(S*S + C*C); D_n = Z*A_n*A_n*A_n + WGS84_E*WGS84_E*S*S*S; F_n = P*A_n*A_n*A_n - WGS84_E*WGS84_E*C*C*C; B_n = 1.5*WGS84_E*S*C*C*(A_n*(P*S - Z*C) - WGS84_E*S*C); /* Update step. */ S = D_n*F_n - B_n*S; C = F_n*F_n - B_n*C; /* The original algorithm as presented in the paper by Fukushima has a * problem with numerical stability. S and C can grow very large or small * and over or underflow a double. In the paper this is acknowledged and * the proposed resolution is to non-dimensionalise the equations for S and * C. However, this does not completely solve the problem. The author caps * the solution to only a couple of iterations and in this period over or * underflow is unlikely but as we require a bit more precision and hence * more iterations so this is still a concern for us. * * As the only thing that is important is the ratio T = S/C, my solution is * to divide both S and C by either S or C. The scaling is chosen such that * one of S or C is scaled to unity whilst the other is scaled to a value * less than one. By dividing by the larger of S or C we ensure that we do * not divide by zero as only one of S or C should ever be zero. * * This incurs an extra division each iteration which the author was * explicityl trying to avoid and it may be that this solution is just * reverting back to the method of iterating on T directly, perhaps this * bears more thought? */ if (S > C) { C = C / S; S = 1; } else { S = S / C; C = 1; } /* Check for convergence and exit early if we have converged. */ if (fabs(S - prev_S) < 1e-16 && fabs(C - prev_C) < 1e-16) { break; } else { prev_S = S; prev_C = C; } } A_n = sqrt(S*S + C*C); llh[0] = copysign(1.0, ecef[2]) * atan(S / (e_c*C)); llh[2] = (p*e_c*C + fabs(ecef[2])*S - WGS84_A*e_c*A_n) / sqrt(e_c*e_c*C*C + S*S); } // return true when lat and lng are within range bool check_lat(float lat) { return fabsf(lat) <= 90; } bool check_lng(float lng) { return fabsf(lng) <= 180; } bool check_lat(int32_t lat) { return labs(lat) <= 90*1e7; } bool check_lng(int32_t lng) { return labs(lng) <= 180*1e7; } bool check_latlng(float lat, float lng) { return check_lat(lat) && check_lng(lng); } bool check_latlng(int32_t lat, int32_t lng) { return check_lat(lat) && check_lng(lng); } bool check_latlng(Location loc) { return check_lat(loc.lat) && check_lng(loc.lng); }