// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Copter.h" // default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control #define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS | MAV_SYS_STATUS_AHRS) // check if a message will fit in the payload space available #define HAVE_PAYLOAD_SPACE(chan, id) (comm_get_txspace(chan) >= MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_ ## id ## _LEN) #define CHECK_PAYLOAD_SIZE(id) if (txspace < MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_ ## id ## _LEN) return false void Copter::gcs_send_heartbeat(void) { gcs_send_message(MSG_HEARTBEAT); } void Copter::gcs_send_deferred(void) { gcs_send_message(MSG_RETRY_DEFERRED); } /* * !!NOTE!! * * the use of NOINLINE separate functions for each message type avoids * a compiler bug in gcc that would cause it to use far more stack * space than is needed. Without the NOINLINE we use the sum of the * stack needed for each message type. Please be careful to follow the * pattern below when adding any new messages */ NOINLINE void Copter::send_heartbeat(mavlink_channel_t chan) { uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; uint8_t system_status = ap.land_complete ? MAV_STATE_STANDBY : MAV_STATE_ACTIVE; uint32_t custom_mode = control_mode; // set system as critical if any failsafe have triggered if (failsafe.radio || failsafe.battery || failsafe.gcs || failsafe.ekf) { system_status = MAV_STATE_CRITICAL; } // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; switch (control_mode) { case AUTO: case RTL: case LOITER: case GUIDED: case CIRCLE: case POSHOLD: case BRAKE: base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; } // all modes except INITIALISING have some form of manual // override if stick mixing is enabled base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; #if HIL_MODE != HIL_MODE_DISABLED base_mode |= MAV_MODE_FLAG_HIL_ENABLED; #endif // we are armed if we are not initialising if (motors.armed()) { base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; mavlink_msg_heartbeat_send( chan, #if (FRAME_CONFIG == QUAD_FRAME) MAV_TYPE_QUADROTOR, #elif (FRAME_CONFIG == TRI_FRAME) MAV_TYPE_TRICOPTER, #elif (FRAME_CONFIG == HEXA_FRAME || FRAME_CONFIG == Y6_FRAME) MAV_TYPE_HEXAROTOR, #elif (FRAME_CONFIG == OCTA_FRAME || FRAME_CONFIG == OCTA_QUAD_FRAME) MAV_TYPE_OCTOROTOR, #elif (FRAME_CONFIG == HELI_FRAME) MAV_TYPE_HELICOPTER, #elif (FRAME_CONFIG == SINGLE_FRAME) //because mavlink did not define a singlecopter, we use a rocket MAV_TYPE_ROCKET, #elif (FRAME_CONFIG == COAX_FRAME) //because mavlink did not define a singlecopter, we use a rocket MAV_TYPE_ROCKET, #else #error Unrecognised frame type #endif MAV_AUTOPILOT_ARDUPILOTMEGA, base_mode, custom_mode, system_status); } NOINLINE void Copter::send_attitude(mavlink_channel_t chan) { const Vector3f &gyro = ins.get_gyro(); mavlink_msg_attitude_send( chan, millis(), ahrs.roll, ahrs.pitch, ahrs.yaw, gyro.x, gyro.y, gyro.z); } #if AC_FENCE == ENABLED NOINLINE void Copter::send_limits_status(mavlink_channel_t chan) { fence_send_mavlink_status(chan); } #endif NOINLINE void Copter::send_extended_status1(mavlink_channel_t chan) { uint32_t control_sensors_present; uint32_t control_sensors_enabled; uint32_t control_sensors_health; // default sensors present control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; // first what sensors/controllers we have if (g.compass_enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present } if (gps.status() > AP_GPS::NO_GPS) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED if (optflow.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif if (ap.rc_receiver_present) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER; } // all present sensors enabled by default except altitude and position control and motors which we will set individually control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS); switch (control_mode) { case ALT_HOLD: case AUTO: case GUIDED: case LOITER: case RTL: case CIRCLE: case LAND: case OF_LOITER: case POSHOLD: case BRAKE: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; break; case SPORT: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; break; } // set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED) if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; } // default to all healthy except baro, compass, gps and receiver which we set individually control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_3D_MAG | MAV_SYS_STATUS_SENSOR_GPS | MAV_SYS_STATUS_SENSOR_RC_RECEIVER); if (barometer.all_healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE; } if (g.compass_enabled && compass.healthy() && ahrs.use_compass()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG; } if (gps.status() > AP_GPS::NO_GPS) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED if (optflow.healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif if (ap.rc_receiver_present && !failsafe.radio) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER; } if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO; } if (!ins.get_accel_health_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL; } if (ahrs.initialised() && !ahrs.healthy()) { // AHRS subsystem is unhealthy control_sensors_health &= ~MAV_SYS_STATUS_AHRS; } int16_t battery_current = -1; int8_t battery_remaining = -1; if (battery.has_current() && battery.healthy()) { battery_remaining = battery.capacity_remaining_pct(); battery_current = battery.current_amps() * 100; } #if AP_TERRAIN_AVAILABLE switch (terrain.status()) { case AP_Terrain::TerrainStatusDisabled: break; case AP_Terrain::TerrainStatusUnhealthy: // To-Do: restore unhealthy terrain status reporting once terrain is used in copter //control_sensors_present |= MAV_SYS_STATUS_TERRAIN; //control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; //break; case AP_Terrain::TerrainStatusOK: control_sensors_present |= MAV_SYS_STATUS_TERRAIN; control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; control_sensors_health |= MAV_SYS_STATUS_TERRAIN; break; } #endif #if CONFIG_SONAR == ENABLED if (sonar.num_sensors() > 0) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; if (sonar.has_data()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } } #endif if (!ap.initialised || ins.calibrating()) { // while initialising the gyros and accels are not enabled control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); } mavlink_msg_sys_status_send( chan, control_sensors_present, control_sensors_enabled, control_sensors_health, (uint16_t)(scheduler.load_average(MAIN_LOOP_MICROS) * 1000), battery.voltage() * 1000, // mV battery_current, // in 10mA units battery_remaining, // in % 0, // comm drops %, 0, // comm drops in pkts, 0, 0, 0, 0); } void NOINLINE Copter::send_location(mavlink_channel_t chan) { uint32_t fix_time; // if we have a GPS fix, take the time as the last fix time. That // allows us to correctly calculate velocities and extrapolate // positions. // If we don't have a GPS fix then we are dead reckoning, and will // use the current boot time as the fix time. if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) { fix_time = gps.last_fix_time_ms(); } else { fix_time = millis(); } const Vector3f &vel = inertial_nav.get_velocity(); mavlink_msg_global_position_int_send( chan, fix_time, current_loc.lat, // in 1E7 degrees current_loc.lng, // in 1E7 degrees (ahrs.get_home().alt + current_loc.alt) * 10UL, // millimeters above sea level current_loc.alt * 10, // millimeters above ground vel.x, // X speed cm/s (+ve North) vel.y, // Y speed cm/s (+ve East) vel.z, // Z speed cm/s (+ve up) ahrs.yaw_sensor); // compass heading in 1/100 degree } void NOINLINE Copter::send_nav_controller_output(mavlink_channel_t chan) { const Vector3f &targets = attitude_control.angle_ef_targets(); mavlink_msg_nav_controller_output_send( chan, targets.x / 1.0e2f, targets.y / 1.0e2f, targets.z / 1.0e2f, wp_bearing / 1.0e2f, wp_distance / 1.0e2f, pos_control.get_alt_error() / 1.0e2f, 0, 0); } // report simulator state void NOINLINE Copter::send_simstate(mavlink_channel_t chan) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL sitl.simstate_send(chan); #endif } void NOINLINE Copter::send_hwstatus(mavlink_channel_t chan) { mavlink_msg_hwstatus_send( chan, hal.analogin->board_voltage()*1000, hal.i2c->lockup_count()); } void NOINLINE Copter::send_servo_out(mavlink_channel_t chan) { #if HIL_MODE != HIL_MODE_DISABLED // normalized values scaled to -10000 to 10000 // This is used for HIL. Do not change without discussing with HIL maintainers #if FRAME_CONFIG == HELI_FRAME mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 g.rc_1.servo_out, g.rc_2.servo_out, g.rc_3.radio_out, g.rc_4.servo_out, 0, 0, 0, 0, receiver_rssi); #else mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 g.rc_1.servo_out, g.rc_2.servo_out, g.rc_3.radio_out, g.rc_4.servo_out, 10000 * g.rc_1.norm_output(), 10000 * g.rc_2.norm_output(), 10000 * g.rc_3.norm_output(), 10000 * g.rc_4.norm_output(), receiver_rssi); #endif #endif // HIL_MODE } void NOINLINE Copter::send_radio_out(mavlink_channel_t chan) { mavlink_msg_servo_output_raw_send( chan, micros(), 0, // port hal.rcout->read(0), hal.rcout->read(1), hal.rcout->read(2), hal.rcout->read(3), hal.rcout->read(4), hal.rcout->read(5), hal.rcout->read(6), hal.rcout->read(7)); } void NOINLINE Copter::send_vfr_hud(mavlink_channel_t chan) { mavlink_msg_vfr_hud_send( chan, gps.ground_speed(), gps.ground_speed(), (ahrs.yaw_sensor / 100) % 360, (int16_t)(motors.get_throttle())/10, current_loc.alt / 100.0f, climb_rate / 100.0f); } void NOINLINE Copter::send_current_waypoint(mavlink_channel_t chan) { mavlink_msg_mission_current_send(chan, mission.get_current_nav_index()); } #if CONFIG_SONAR == ENABLED void NOINLINE Copter::send_rangefinder(mavlink_channel_t chan) { // exit immediately if sonar is disabled if (!sonar.has_data()) { return; } mavlink_msg_rangefinder_send( chan, sonar.distance_cm() * 0.01f, sonar.voltage_mv() * 0.001f); } #endif /* send PID tuning message */ void Copter::send_pid_tuning(mavlink_channel_t chan) { const Vector3f &gyro = ahrs.get_gyro(); if (g.gcs_pid_mask & 1) { const DataFlash_Class::PID_Info &pid_info = g.pid_rate_roll.get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_ROLL, pid_info.desired*0.01f, degrees(gyro.x), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 2) { const DataFlash_Class::PID_Info &pid_info = g.pid_rate_pitch.get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH, pid_info.desired*0.01f, degrees(gyro.y), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 4) { const DataFlash_Class::PID_Info &pid_info = g.pid_rate_yaw.get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_YAW, pid_info.desired*0.01f, degrees(gyro.z), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 8) { const DataFlash_Class::PID_Info &pid_info = g.pid_accel_z.get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ, pid_info.desired*0.01f, -(ahrs.get_accel_ef_blended().z + GRAVITY_MSS), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } } void NOINLINE Copter::send_statustext(mavlink_channel_t chan) { mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status; mavlink_msg_statustext_send( chan, s->severity, s->text); } // are we still delaying telemetry to try to avoid Xbee bricking? bool Copter::telemetry_delayed(mavlink_channel_t chan) { uint32_t tnow = millis() >> 10; if (tnow > (uint32_t)g.telem_delay) { return false; } if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) { // this is USB telemetry, so won't be an Xbee return false; } // we're either on the 2nd UART, or no USB cable is connected // we need to delay telemetry by the TELEM_DELAY time return true; } // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK::try_send_message(enum ap_message id) { uint16_t txspace = comm_get_txspace(chan); if (copter.telemetry_delayed(chan)) { return false; } #if HIL_MODE != HIL_MODE_SENSORS // if we don't have at least 250 micros remaining before the main loop // wants to fire then don't send a mavlink message. We want to // prioritise the main flight control loop over communications if (copter.scheduler.time_available_usec() < 250 && copter.motors.armed()) { copter.gcs_out_of_time = true; return false; } #endif switch(id) { case MSG_HEARTBEAT: CHECK_PAYLOAD_SIZE(HEARTBEAT); copter.gcs[chan-MAVLINK_COMM_0].last_heartbeat_time = hal.scheduler->millis(); copter.send_heartbeat(chan); break; case MSG_EXTENDED_STATUS1: // send extended status only once vehicle has been initialised // to avoid unnecessary errors being reported to user if (copter.ap.initialised) { CHECK_PAYLOAD_SIZE(SYS_STATUS); copter.send_extended_status1(chan); CHECK_PAYLOAD_SIZE(POWER_STATUS); copter.gcs[chan-MAVLINK_COMM_0].send_power_status(); } break; case MSG_EXTENDED_STATUS2: CHECK_PAYLOAD_SIZE(MEMINFO); copter.gcs[chan-MAVLINK_COMM_0].send_meminfo(); break; case MSG_ATTITUDE: CHECK_PAYLOAD_SIZE(ATTITUDE); copter.send_attitude(chan); break; case MSG_LOCATION: CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT); copter.send_location(chan); break; case MSG_LOCAL_POSITION: CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED); send_local_position(copter.ahrs); break; case MSG_NAV_CONTROLLER_OUTPUT: CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); copter.send_nav_controller_output(chan); break; case MSG_GPS_RAW: return copter.gcs[chan-MAVLINK_COMM_0].send_gps_raw(copter.gps); case MSG_SYSTEM_TIME: CHECK_PAYLOAD_SIZE(SYSTEM_TIME); copter.gcs[chan-MAVLINK_COMM_0].send_system_time(copter.gps); break; case MSG_SERVO_OUT: CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); copter.send_servo_out(chan); break; case MSG_RADIO_IN: CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW); copter.gcs[chan-MAVLINK_COMM_0].send_radio_in(copter.receiver_rssi); break; case MSG_RADIO_OUT: CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW); copter.send_radio_out(chan); break; case MSG_VFR_HUD: CHECK_PAYLOAD_SIZE(VFR_HUD); copter.send_vfr_hud(chan); break; case MSG_RAW_IMU1: CHECK_PAYLOAD_SIZE(RAW_IMU); copter.gcs[chan-MAVLINK_COMM_0].send_raw_imu(copter.ins, copter.compass); break; case MSG_RAW_IMU2: CHECK_PAYLOAD_SIZE(SCALED_PRESSURE); copter.gcs[chan-MAVLINK_COMM_0].send_scaled_pressure(copter.barometer); break; case MSG_RAW_IMU3: CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS); copter.gcs[chan-MAVLINK_COMM_0].send_sensor_offsets(copter.ins, copter.compass, copter.barometer); break; case MSG_CURRENT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_CURRENT); copter.send_current_waypoint(chan); break; case MSG_NEXT_PARAM: CHECK_PAYLOAD_SIZE(PARAM_VALUE); copter.gcs[chan-MAVLINK_COMM_0].queued_param_send(); break; case MSG_NEXT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_REQUEST); copter.gcs[chan-MAVLINK_COMM_0].queued_waypoint_send(); break; case MSG_RANGEFINDER: #if CONFIG_SONAR == ENABLED CHECK_PAYLOAD_SIZE(RANGEFINDER); copter.send_rangefinder(chan); #endif break; case MSG_TERRAIN: #if AP_TERRAIN_AVAILABLE CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST); copter.terrain.send_request(chan); #endif break; case MSG_CAMERA_FEEDBACK: #if CAMERA == ENABLED CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK); copter.camera.send_feedback(chan, copter.gps, copter.ahrs, copter.current_loc); #endif break; case MSG_STATUSTEXT: CHECK_PAYLOAD_SIZE(STATUSTEXT); copter.send_statustext(chan); break; case MSG_LIMITS_STATUS: #if AC_FENCE == ENABLED CHECK_PAYLOAD_SIZE(LIMITS_STATUS); copter.send_limits_status(chan); #endif break; case MSG_AHRS: CHECK_PAYLOAD_SIZE(AHRS); copter.gcs[chan-MAVLINK_COMM_0].send_ahrs(copter.ahrs); break; case MSG_SIMSTATE: #if CONFIG_HAL_BOARD == HAL_BOARD_SITL CHECK_PAYLOAD_SIZE(SIMSTATE); copter.send_simstate(chan); #endif CHECK_PAYLOAD_SIZE(AHRS2); copter.gcs[chan-MAVLINK_COMM_0].send_ahrs2(copter.ahrs); break; case MSG_HWSTATUS: CHECK_PAYLOAD_SIZE(HWSTATUS); copter.send_hwstatus(chan); break; case MSG_MOUNT_STATUS: #if MOUNT == ENABLED CHECK_PAYLOAD_SIZE(MOUNT_STATUS); copter.camera_mount.status_msg(chan); #endif // MOUNT == ENABLED break; case MSG_BATTERY2: CHECK_PAYLOAD_SIZE(BATTERY2); copter.gcs[chan-MAVLINK_COMM_0].send_battery2(copter.battery); break; case MSG_OPTICAL_FLOW: #if OPTFLOW == ENABLED CHECK_PAYLOAD_SIZE(OPTICAL_FLOW); copter.gcs[chan-MAVLINK_COMM_0].send_opticalflow(copter.ahrs, copter.optflow); #endif break; case MSG_GIMBAL_REPORT: #if MOUNT == ENABLED CHECK_PAYLOAD_SIZE(GIMBAL_REPORT); copter.camera_mount.send_gimbal_report(chan); #endif break; case MSG_EKF_STATUS_REPORT: CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT); copter.ahrs.get_NavEKF().send_status_report(chan); break; case MSG_FENCE_STATUS: case MSG_WIND: // unused break; case MSG_PID_TUNING: CHECK_PAYLOAD_SIZE(PID_TUNING); copter.send_pid_tuning(chan); break; case MSG_VIBRATION: CHECK_PAYLOAD_SIZE(VIBRATION); send_vibration(copter.ins); break; case MSG_RETRY_DEFERRED: break; // just here to prevent a warning } return true; } const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_PRESSURE, and SENSOR_OFFSETS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 0), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Stream rate of SYS_STATUS, MEMINFO, MISSION_CURRENT, GPS_RAW_INT, NAV_CONTROLLER_OUTPUT, and LIMITS_STATUS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 0), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS_RAW to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 0), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Stream rate of RC_CHANNELS_SCALED (HIL only) to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 0), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Stream rate of GLOBAL_POSITION_INT to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 0), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Stream rate of ATTITUDE and SIMSTATE (SITL only) to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 0), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Stream rate of VFR_HUD to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 0), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Stream rate of AHRS, HWSTATUS, and SYSTEM_TIME to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 0), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Stream rate of PARAM_VALUE to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 0), AP_GROUPEND }; // see if we should send a stream now. Called at 50Hz bool GCS_MAVLINK::stream_trigger(enum streams stream_num) { if (stream_num >= NUM_STREAMS) { return false; } float rate = (uint8_t)streamRates[stream_num].get(); // send at a much lower rate while handling waypoints and // parameter sends if ((stream_num != STREAM_PARAMS) && (waypoint_receiving || _queued_parameter != NULL)) { rate *= 0.25f; } if (rate <= 0) { return false; } if (stream_ticks[stream_num] == 0) { // we're triggering now, setup the next trigger point if (rate > 50) { rate = 50; } stream_ticks[stream_num] = (50 / rate) - 1 + stream_slowdown; return true; } // count down at 50Hz stream_ticks[stream_num]--; return false; } void GCS_MAVLINK::data_stream_send(void) { if (waypoint_receiving) { // don't interfere with mission transfer return; } if (!copter.in_mavlink_delay && !copter.motors.armed()) { handle_log_send(copter.DataFlash); } copter.gcs_out_of_time = false; if (_queued_parameter != NULL) { if (streamRates[STREAM_PARAMS].get() <= 0) { streamRates[STREAM_PARAMS].set(10); } if (stream_trigger(STREAM_PARAMS)) { send_message(MSG_NEXT_PARAM); } // don't send anything else at the same time as parameters return; } if (copter.gcs_out_of_time) return; if (copter.in_mavlink_delay) { // don't send any other stream types while in the delay callback return; } if (stream_trigger(STREAM_RAW_SENSORS)) { send_message(MSG_RAW_IMU1); send_message(MSG_RAW_IMU2); send_message(MSG_RAW_IMU3); } if (copter.gcs_out_of_time) return; if (stream_trigger(STREAM_EXTENDED_STATUS)) { send_message(MSG_EXTENDED_STATUS1); send_message(MSG_EXTENDED_STATUS2); send_message(MSG_CURRENT_WAYPOINT); send_message(MSG_GPS_RAW); send_message(MSG_NAV_CONTROLLER_OUTPUT); send_message(MSG_LIMITS_STATUS); } if (copter.gcs_out_of_time) return; if (stream_trigger(STREAM_POSITION)) { send_message(MSG_LOCATION); send_message(MSG_LOCAL_POSITION); } if (copter.gcs_out_of_time) return; if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); } if (copter.gcs_out_of_time) return; if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_RADIO_OUT); send_message(MSG_RADIO_IN); } if (copter.gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA1)) { send_message(MSG_ATTITUDE); send_message(MSG_SIMSTATE); send_message(MSG_PID_TUNING); } if (copter.gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA2)) { send_message(MSG_VFR_HUD); } if (copter.gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA3)) { send_message(MSG_AHRS); send_message(MSG_HWSTATUS); send_message(MSG_SYSTEM_TIME); send_message(MSG_RANGEFINDER); #if AP_TERRAIN_AVAILABLE send_message(MSG_TERRAIN); #endif send_message(MSG_BATTERY2); send_message(MSG_MOUNT_STATUS); send_message(MSG_OPTICAL_FLOW); send_message(MSG_GIMBAL_REPORT); send_message(MSG_EKF_STATUS_REPORT); send_message(MSG_VIBRATION); } } void GCS_MAVLINK::handle_guided_request(AP_Mission::Mission_Command &cmd) { copter.do_guided(cmd); } void GCS_MAVLINK::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { // add home alt if needed if (cmd.content.location.flags.relative_alt) { cmd.content.location.alt += copter.ahrs.get_home().alt; } // To-Do: update target altitude for loiter or waypoint controller depending upon nav mode } void GCS_MAVLINK::handleMessage(mavlink_message_t* msg) { uint8_t result = MAV_RESULT_FAILED; // assume failure. Each messages id is responsible for return ACK or NAK if required switch (msg->msgid) { case MAVLINK_MSG_ID_HEARTBEAT: // MAV ID: 0 { // We keep track of the last time we received a heartbeat from our GCS for failsafe purposes if(msg->sysid != copter.g.sysid_my_gcs) break; copter.failsafe.last_heartbeat_ms = hal.scheduler->millis(); copter.pmTest1++; break; } case MAVLINK_MSG_ID_SET_MODE: // MAV ID: 11 { handle_set_mode(msg, FUNCTOR_BIND(&copter, &Copter::set_mode, bool, uint8_t)); break; } case MAVLINK_MSG_ID_PARAM_REQUEST_READ: // MAV ID: 20 { handle_param_request_read(msg); break; } case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: // MAV ID: 21 { // mark the firmware version in the tlog send_text_P(SEVERITY_LOW, PSTR(FIRMWARE_STRING)); #if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION) send_text_P(SEVERITY_LOW, PSTR("PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION)); #endif send_text_P(SEVERITY_LOW, PSTR("Frame: " FRAME_CONFIG_STRING)); handle_param_request_list(msg); break; } case MAVLINK_MSG_ID_PARAM_SET: // 23 { handle_param_set(msg, &copter.DataFlash); break; } case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: // MAV ID: 38 { handle_mission_write_partial_list(copter.mission, msg); break; } // GCS has sent us a mission item, store to EEPROM case MAVLINK_MSG_ID_MISSION_ITEM: // MAV ID: 39 { if (handle_mission_item(msg, copter.mission)) { copter.DataFlash.Log_Write_EntireMission(copter.mission); } break; } // read an individual command from EEPROM and send it to the GCS case MAVLINK_MSG_ID_MISSION_REQUEST: // MAV ID: 40 { handle_mission_request(copter.mission, msg); break; } case MAVLINK_MSG_ID_MISSION_SET_CURRENT: // MAV ID: 41 { handle_mission_set_current(copter.mission, msg); break; } // GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: // MAV ID: 43 { handle_mission_request_list(copter.mission, msg); break; } // GCS provides the full number of commands it wishes to upload // individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message case MAVLINK_MSG_ID_MISSION_COUNT: // MAV ID: 44 { handle_mission_count(copter.mission, msg); break; } case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: // MAV ID: 45 { handle_mission_clear_all(copter.mission, msg); break; } case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: // MAV ID: 66 { handle_request_data_stream(msg, false); break; } case MAVLINK_MSG_ID_GIMBAL_REPORT: { #if MOUNT == ENABLED handle_gimbal_report(copter.camera_mount, msg); #endif break; } case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: // MAV ID: 70 { // allow override of RC channel values for HIL // or for complete GCS control of switch position // and RC PWM values. if(msg->sysid != copter.g.sysid_my_gcs) break; // Only accept control from our gcs mavlink_rc_channels_override_t packet; int16_t v[8]; mavlink_msg_rc_channels_override_decode(msg, &packet); v[0] = packet.chan1_raw; v[1] = packet.chan2_raw; v[2] = packet.chan3_raw; v[3] = packet.chan4_raw; v[4] = packet.chan5_raw; v[5] = packet.chan6_raw; v[6] = packet.chan7_raw; v[7] = packet.chan8_raw; // record that rc are overwritten so we can trigger a failsafe if we lose contact with groundstation copter.failsafe.rc_override_active = hal.rcin->set_overrides(v, 8); // a RC override message is considered to be a 'heartbeat' from the ground station for failsafe purposes copter.failsafe.last_heartbeat_ms = hal.scheduler->millis(); break; } // Pre-Flight calibration requests case MAVLINK_MSG_ID_COMMAND_LONG: // MAV ID: 76 { // decode packet mavlink_command_long_t packet; mavlink_msg_command_long_decode(msg, &packet); switch(packet.command) { case MAV_CMD_START_RX_PAIR: // initiate bind procedure if (!hal.rcin->rc_bind(packet.param1)) { result = MAV_RESULT_FAILED; } else { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_NAV_TAKEOFF: { // param3 : horizontal navigation by pilot acceptable // param4 : yaw angle (not supported) // param5 : latitude (not supported) // param6 : longitude (not supported) // param7 : altitude [metres] float takeoff_alt = packet.param7 * 100; // Convert m to cm if(copter.do_user_takeoff(takeoff_alt, is_zero(packet.param3))) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } break; } case MAV_CMD_NAV_LOITER_UNLIM: if (copter.set_mode(LOITER)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: if (copter.set_mode(RTL)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_NAV_LAND: if (copter.set_mode(LAND)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_CONDITION_YAW: // param1 : target angle [0-360] // param2 : speed during change [deg per second] // param3 : direction (-1:ccw, +1:cw) // param4 : relative offset (1) or absolute angle (0) if ((packet.param1 >= 0.0f) && (packet.param1 <= 360.0f) && (is_zero(packet.param4) || is_equal(packet.param4,1.0f))) { copter.set_auto_yaw_look_at_heading(packet.param1, packet.param2, (int8_t)packet.param3, (uint8_t)packet.param4); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } break; case MAV_CMD_DO_CHANGE_SPEED: // param1 : unused // param2 : new speed in m/s // param3 : unused // param4 : unused if (packet.param2 > 0.0f) { copter.wp_nav.set_speed_xy(packet.param2 * 100.0f); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } break; case MAV_CMD_DO_SET_HOME: // param1 : use current (1=use current location, 0=use specified location) // param5 : latitude // param6 : longitude // param7 : altitude (absolute) result = MAV_RESULT_FAILED; // assume failure if(is_equal(packet.param1,1.0f) || (is_zero(packet.param5) && is_zero(packet.param6) && is_zero(packet.param7))) { if (copter.set_home_to_current_location_and_lock()) { result = MAV_RESULT_ACCEPTED; } } else { Location new_home_loc; new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f); new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f); new_home_loc.alt = (int32_t)(packet.param7 * 100.0f); if (!copter.far_from_EKF_origin(new_home_loc)) { if (copter.set_home_and_lock(new_home_loc)) { result = MAV_RESULT_ACCEPTED; } } } break; case MAV_CMD_DO_SET_ROI: // param1 : regional of interest mode (not supported) // param2 : mission index/ target id (not supported) // param3 : ROI index (not supported) // param5 : x / lat // param6 : y / lon // param7 : z / alt Location roi_loc; roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f); roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f); roi_loc.alt = (int32_t)(packet.param7 * 100.0f); copter.set_auto_yaw_roi(roi_loc); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_MISSION_START: if (copter.motors.armed() && copter.set_mode(AUTO)) { copter.set_auto_armed(true); result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_PREFLIGHT_CALIBRATION: // exit immediately if armed if (copter.motors.armed()) { result = MAV_RESULT_FAILED; break; } if (is_equal(packet.param1,1.0f)) { // gyro offset calibration copter.ins.init_gyro(); // reset ahrs gyro bias if (copter.ins.gyro_calibrated_ok_all()) { copter.ahrs.reset_gyro_drift(); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else if (is_equal(packet.param3,1.0f)) { // fast barometer calibration copter.init_barometer(false); result = MAV_RESULT_ACCEPTED; } else if (is_equal(packet.param4,1.0f)) { result = MAV_RESULT_UNSUPPORTED; } else if (is_equal(packet.param5,1.0f)) { // 3d accel calibration float trim_roll, trim_pitch; // this blocks AP_InertialSensor_UserInteract_MAVLink interact(this); if(copter.ins.calibrate_accel(&interact, trim_roll, trim_pitch)) { // reset ahrs's trim to suggested values from calibration routine copter.ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else if (is_equal(packet.param5,2.0f)) { // accel trim float trim_roll, trim_pitch; if(copter.ins.calibrate_trim(trim_roll, trim_pitch)) { // reset ahrs's trim to suggested values from calibration routine copter.ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else if (is_equal(packet.param6,1.0f)) { // compassmot calibration result = copter.mavlink_compassmot(chan); } break; case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS: if (is_equal(packet.param1,2.0f)) { // save first compass's offsets copter.compass.set_and_save_offsets(0, packet.param2, packet.param3, packet.param4); result = MAV_RESULT_ACCEPTED; } if (is_equal(packet.param1,5.0f)) { // save secondary compass's offsets copter.compass.set_and_save_offsets(1, packet.param2, packet.param3, packet.param4); result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_COMPONENT_ARM_DISARM: if (is_equal(packet.param1,1.0f)) { // attempt to arm and return success or failure if (copter.init_arm_motors(true)) { result = MAV_RESULT_ACCEPTED; } } else if (is_zero(packet.param1) && (copter.mode_has_manual_throttle(copter.control_mode) || copter.ap.land_complete || is_equal(packet.param2,21196.0f))) { copter.init_disarm_motors(); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_UNSUPPORTED; } break; case MAV_CMD_DO_SET_SERVO: if (copter.ServoRelayEvents.do_set_servo(packet.param1, packet.param2)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_REPEAT_SERVO: if (copter.ServoRelayEvents.do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4*1000)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_SET_RELAY: if (copter.ServoRelayEvents.do_set_relay(packet.param1, packet.param2)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_REPEAT_RELAY: if (copter.ServoRelayEvents.do_repeat_relay(packet.param1, packet.param2, packet.param3*1000)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: if (is_equal(packet.param1,1.0f) || is_equal(packet.param1,3.0f)) { AP_Notify::events.firmware_update = 1; copter.update_notify(); hal.scheduler->delay(50); // when packet.param1 == 3 we reboot to hold in bootloader hal.scheduler->reboot(is_equal(packet.param1,3.0f)); result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_FENCE_ENABLE: #if AC_FENCE == ENABLED result = MAV_RESULT_ACCEPTED; switch ((uint16_t)packet.param1) { case 0: copter.fence.enable(false); break; case 1: copter.fence.enable(true); break; default: result = MAV_RESULT_FAILED; break; } #else // if fence code is not included return failure result = MAV_RESULT_FAILED; #endif break; #if PARACHUTE == ENABLED case MAV_CMD_DO_PARACHUTE: // configure or release parachute result = MAV_RESULT_ACCEPTED; switch ((uint16_t)packet.param1) { case PARACHUTE_DISABLE: copter.parachute.enabled(false); copter.Log_Write_Event(DATA_PARACHUTE_DISABLED); break; case PARACHUTE_ENABLE: copter.parachute.enabled(true); copter.Log_Write_Event(DATA_PARACHUTE_ENABLED); break; case PARACHUTE_RELEASE: // treat as a manual release which performs some additional check of altitude copter.parachute_manual_release(); break; default: result = MAV_RESULT_FAILED; break; } break; #endif case MAV_CMD_DO_MOTOR_TEST: // param1 : motor sequence number (a number from 1 to max number of motors on the vehicle) // param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum) // param3 : throttle (range depends upon param2) // param4 : timeout (in seconds) result = copter.mavlink_motor_test_start(chan, (uint8_t)packet.param1, (uint8_t)packet.param2, (uint16_t)packet.param3, packet.param4); break; #if EPM_ENABLED == ENABLED case MAV_CMD_DO_GRIPPER: // param1 : gripper number (ignored) // param2 : action (0=release, 1=grab). See GRIPPER_ACTIONS enum. if(!copter.epm.enabled()) { result = MAV_RESULT_FAILED; } else { result = MAV_RESULT_ACCEPTED; switch ((uint8_t)packet.param2) { case GRIPPER_ACTION_RELEASE: copter.epm.release(); break; case GRIPPER_ACTION_GRAB: copter.epm.grab(); break; default: result = MAV_RESULT_FAILED; break; } } break; #endif case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: { if (is_equal(packet.param1,1.0f)) { copter.gcs[chan-MAVLINK_COMM_0].send_autopilot_version(); result = MAV_RESULT_ACCEPTED; } break; } default: result = MAV_RESULT_UNSUPPORTED; break; } // send ACK or NAK mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result); break; } case MAVLINK_MSG_ID_COMMAND_ACK: // MAV ID: 77 { copter.command_ack_counter++; break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: // MAV ID: 84 { // decode packet mavlink_set_position_target_local_ned_t packet; mavlink_msg_set_position_target_local_ned_decode(msg, &packet); // exit if vehicle is not in Guided mode or Auto-Guided mode if ((copter.control_mode != GUIDED) && !(copter.control_mode == AUTO && copter.auto_mode == Auto_NavGuided)) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED && packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED && packet.coordinate_frame != MAV_FRAME_BODY_NED && packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; /* * for future use: * bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE; * bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; * bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; */ // prepare position Vector3f pos_vector; if (!pos_ignore) { // convert to cm pos_vector = Vector3f(packet.x * 100.0f, packet.y * 100.0f, -packet.z * 100.0f); // rotate to body-frame if necessary if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { copter.rotate_body_frame_to_NE(pos_vector.x, pos_vector.y); } // add body offset if necessary if (packet.coordinate_frame == MAV_FRAME_LOCAL_OFFSET_NED || packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { pos_vector += copter.inertial_nav.get_position(); } else { // convert from alt-above-home to alt-above-ekf-origin pos_vector.z = copter.pv_alt_above_origin(pos_vector.z); } } // prepare velocity Vector3f vel_vector; if (!vel_ignore) { // convert to cm vel_vector = Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f); // rotate to body-frame if necessary if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { copter.rotate_body_frame_to_NE(vel_vector.x, vel_vector.y); } } // send request if (!pos_ignore && !vel_ignore && acc_ignore) { copter.guided_set_destination_posvel(pos_vector, vel_vector); } else if (pos_ignore && !vel_ignore && acc_ignore) { copter.guided_set_velocity(vel_vector); } else if (!pos_ignore && vel_ignore && acc_ignore) { copter.guided_set_destination(pos_vector); } else { result = MAV_RESULT_FAILED; } break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: // MAV ID: 86 { // decode packet mavlink_set_position_target_global_int_t packet; mavlink_msg_set_position_target_global_int_decode(msg, &packet); // exit if vehicle is not in Guided mode or Auto-Guided mode if ((copter.control_mode != GUIDED) && !(copter.control_mode == AUTO && copter.auto_mode == Auto_NavGuided)) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; /* * for future use: * bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE; * bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; * bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; */ Vector3f pos_ned; if(!pos_ignore) { Location loc; loc.lat = packet.lat_int; loc.lng = packet.lon_int; loc.alt = packet.alt*100; switch (packet.coordinate_frame) { case MAV_FRAME_GLOBAL_RELATIVE_ALT: case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT: loc.flags.relative_alt = true; loc.flags.terrain_alt = false; break; case MAV_FRAME_GLOBAL_TERRAIN_ALT: case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT: loc.flags.relative_alt = true; loc.flags.terrain_alt = true; break; case MAV_FRAME_GLOBAL: case MAV_FRAME_GLOBAL_INT: default: loc.flags.relative_alt = false; loc.flags.terrain_alt = false; break; } pos_ned = copter.pv_location_to_vector(loc); } if (!pos_ignore && !vel_ignore && acc_ignore) { copter.guided_set_destination_posvel(pos_ned, Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f)); } else if (pos_ignore && !vel_ignore && acc_ignore) { copter.guided_set_velocity(Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f)); } else if (!pos_ignore && vel_ignore && acc_ignore) { copter.guided_set_destination(pos_ned); } else { result = MAV_RESULT_FAILED; } break; } #if HIL_MODE != HIL_MODE_DISABLED case MAVLINK_MSG_ID_HIL_STATE: // MAV ID: 90 { mavlink_hil_state_t packet; mavlink_msg_hil_state_decode(msg, &packet); // set gps hil sensor Location loc; loc.lat = packet.lat; loc.lng = packet.lon; loc.alt = packet.alt/10; Vector3f vel(packet.vx, packet.vy, packet.vz); vel *= 0.01f; gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D, packet.time_usec/1000, loc, vel, 10, 0, true); // rad/sec Vector3f gyros; gyros.x = packet.rollspeed; gyros.y = packet.pitchspeed; gyros.z = packet.yawspeed; // m/s/s Vector3f accels; accels.x = packet.xacc * (GRAVITY_MSS/1000.0f); accels.y = packet.yacc * (GRAVITY_MSS/1000.0f); accels.z = packet.zacc * (GRAVITY_MSS/1000.0f); ins.set_gyro(0, gyros); ins.set_accel(0, accels); copter.barometer.setHIL(packet.alt*0.001f); copter.compass.setHIL(0, packet.roll, packet.pitch, packet.yaw); copter.compass.setHIL(1, packet.roll, packet.pitch, packet.yaw); break; } #endif // HIL_MODE != HIL_MODE_DISABLED case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: // MAV ID: 109 { handle_radio_status(msg, copter.DataFlash, copter.should_log(MASK_LOG_PM)); break; } case MAVLINK_MSG_ID_LOG_REQUEST_DATA: case MAVLINK_MSG_ID_LOG_ERASE: copter.in_log_download = true; // fallthru case MAVLINK_MSG_ID_LOG_REQUEST_LIST: if (!copter.in_mavlink_delay && !copter.motors.armed()) { handle_log_message(msg, copter.DataFlash); } break; case MAVLINK_MSG_ID_LOG_REQUEST_END: copter.in_log_download = false; if (!copter.in_mavlink_delay && !copter.motors.armed()) { handle_log_message(msg, copter.DataFlash); } break; #if HAL_CPU_CLASS > HAL_CPU_CLASS_16 case MAVLINK_MSG_ID_SERIAL_CONTROL: handle_serial_control(msg, copter.gps); break; case MAVLINK_MSG_ID_GPS_INJECT_DATA: handle_gps_inject(msg, copter.gps); result = MAV_RESULT_ACCEPTED; break; #endif #if CAMERA == ENABLED case MAVLINK_MSG_ID_DIGICAM_CONFIGURE: // MAV ID: 202 break; case MAVLINK_MSG_ID_DIGICAM_CONTROL: copter.camera.control_msg(msg); copter.log_picture(); break; #endif // CAMERA == ENABLED #if MOUNT == ENABLED case MAVLINK_MSG_ID_MOUNT_CONFIGURE: // MAV ID: 204 copter.camera_mount.configure_msg(msg); break; case MAVLINK_MSG_ID_MOUNT_CONTROL: copter.camera_mount.control_msg(msg); break; #endif // MOUNT == ENABLED case MAVLINK_MSG_ID_TERRAIN_DATA: case MAVLINK_MSG_ID_TERRAIN_CHECK: #if AP_TERRAIN_AVAILABLE copter.terrain.handle_data(chan, msg); #endif break; #if AC_RALLY == ENABLED // receive a rally point from GCS and store in EEPROM case MAVLINK_MSG_ID_RALLY_POINT: { mavlink_rally_point_t packet; mavlink_msg_rally_point_decode(msg, &packet); if (packet.idx >= copter.rally.get_rally_total() || packet.idx >= copter.rally.get_rally_max()) { send_text_P(SEVERITY_LOW,PSTR("bad rally point message ID")); break; } if (packet.count != copter.rally.get_rally_total()) { send_text_P(SEVERITY_LOW,PSTR("bad rally point message count")); break; } RallyLocation rally_point; rally_point.lat = packet.lat; rally_point.lng = packet.lng; rally_point.alt = packet.alt; rally_point.break_alt = packet.break_alt; rally_point.land_dir = packet.land_dir; rally_point.flags = packet.flags; if (!copter.rally.set_rally_point_with_index(packet.idx, rally_point)) { send_text_P(SEVERITY_HIGH, PSTR("error setting rally point")); } break; } //send a rally point to the GCS case MAVLINK_MSG_ID_RALLY_FETCH_POINT: { //send_text_P(SEVERITY_HIGH, PSTR("## getting rally point in GCS_Mavlink.cpp 1")); // #### TEMP mavlink_rally_fetch_point_t packet; mavlink_msg_rally_fetch_point_decode(msg, &packet); //send_text_P(SEVERITY_HIGH, PSTR("## getting rally point in GCS_Mavlink.cpp 2")); // #### TEMP if (packet.idx > copter.rally.get_rally_total()) { send_text_P(SEVERITY_LOW, PSTR("bad rally point index")); break; } //send_text_P(SEVERITY_HIGH, PSTR("## getting rally point in GCS_Mavlink.cpp 3")); // #### TEMP RallyLocation rally_point; if (!copter.rally.get_rally_point_with_index(packet.idx, rally_point)) { send_text_P(SEVERITY_LOW, PSTR("failed to set rally point")); break; } //send_text_P(SEVERITY_HIGH, PSTR("## getting rally point in GCS_Mavlink.cpp 4")); // #### TEMP mavlink_msg_rally_point_send_buf(msg, chan, msg->sysid, msg->compid, packet.idx, copter.rally.get_rally_total(), rally_point.lat, rally_point.lng, rally_point.alt, rally_point.break_alt, rally_point.land_dir, rally_point.flags); //send_text_P(SEVERITY_HIGH, PSTR("## getting rally point in GCS_Mavlink.cpp 5")); // #### TEMP break; } #endif // AC_RALLY == ENABLED case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST: copter.gcs[chan-MAVLINK_COMM_0].send_autopilot_version(); break; case MAVLINK_MSG_ID_LED_CONTROL: // send message to Notify AP_Notify::handle_led_control(msg); break; } // end switch } // end handle mavlink /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ void Copter::mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs[0].initialised || in_mavlink_delay) return; in_mavlink_delay = true; uint32_t tnow = millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs_send_heartbeat(); gcs_send_message(MSG_EXTENDED_STATUS1); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs_check_input(); gcs_data_stream_send(); gcs_send_deferred(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM...")); } check_usb_mux(); in_mavlink_delay = false; } /* * send a message on both GCS links */ void Copter::gcs_send_message(enum ap_message id) { for (uint8_t i=0; ivsnprintf_P((char *)gcs[0].pending_status.text, sizeof(gcs[0].pending_status.text), fmt, arg_list); va_end(arg_list); gcs[0].send_message(MSG_STATUSTEXT); for (uint8_t i=1; i