/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * location.cpp * Copyright (C) Andrew Tridgell 2011 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ /* this module deals with calculations involving struct Location */ #include #include "AP_Math.h" static float longitude_scale(const struct Location *loc) { static uint32_t last_lat; static float scale = 1.0; if (abs(last_lat - loc->lat) < 100000) { // we are within 0.01 degrees (about 1km) of the // same latitude. We can avoid the cos() and return // the same scale factor. return scale; } scale = cos((fabs((float)loc->lat)/1.0e7) * 0.0174532925); return scale; } // return distance in meters to between two locations, or -1 // if one of the locations is invalid float get_distance(const struct Location *loc1, const struct Location *loc2) { if (loc1->lat == 0 || loc1->lng == 0) return -1; if(loc2->lat == 0 || loc2->lng == 0) return -1; float dlat = (float)(loc2->lat - loc1->lat); float dlong = ((float)(loc2->lng - loc1->lng)) * longitude_scale(loc2); return sqrt(sq(dlat) + sq(dlong)) * .01113195; } // return distance in centimeters to between two locations, or -1 if // one of the locations is invalid int32_t get_distance_cm(const struct Location *loc1, const struct Location *loc2) { return get_distance(loc1, loc2) * 100; } // return bearing in centi-degrees between two locations int32_t get_bearing_cd(const struct Location *loc1, const struct Location *loc2) { int32_t off_x = loc2->lng - loc1->lng; int32_t off_y = (loc2->lat - loc1->lat) / longitude_scale(loc2); int32_t bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; if (bearing < 0) bearing += 36000; return bearing; } // see if location is past a line perpendicular to // the line between point1 and point2. If point1 is // our previous waypoint and point2 is our target waypoint // then this function returns true if we have flown past // the target waypoint bool location_passed_point(struct Location &location, struct Location &point1, struct Location &point2) { // the 3 points form a triangle. If the angle between lines // point1->point2 and location->point2 is greater than 90 // degrees then we have passed the waypoint Vector2f loc1(location.lat, location.lng); Vector2f pt1(point1.lat, point1.lng); Vector2f pt2(point2.lat, point2.lng); float angle = (loc1 - pt2).angle(pt1 - pt2); if (isinf(angle)) { // two of the points are co-located. // If location is equal to point2 then say we have passed the // waypoint, otherwise say we haven't if (get_distance(&location, &point2) == 0) { return true; } return false; } else if (angle == 0) { // if we are exactly on the line between point1 and // point2 then we are past the waypoint if the // distance from location to point1 is greater then // the distance from point2 to point1 return get_distance(&location, &point1) > get_distance(&point2, &point1); } if (degrees(angle) > 90) { return true; } return false; }