#include #include #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #include "SPIDriver.h" #include #include #include #include #include #include #include #include #include #include "GPIO.h" #define SPI_DEBUGGING 0 using namespace Linux; extern const AP_HAL::HAL& hal; #define MHZ (1000U*1000U) #define KHZ (1000U) #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBOARD LinuxSPIDeviceDriver LinuxSPIDeviceManager::_device[] = { // different SPI tables per board subtype LinuxSPIDeviceDriver(1, 0, AP_HAL::SPIDevice_LSM9DS0_AM, SPI_MODE_3, 8, BBB_P9_17, 10*MHZ,10*MHZ), LinuxSPIDeviceDriver(1, 0, AP_HAL::SPIDevice_LSM9DS0_G, SPI_MODE_3, 8, BBB_P8_9, 10*MHZ,10*MHZ), LinuxSPIDeviceDriver(2, 0, AP_HAL::SPIDevice_MS5611, SPI_MODE_3, 8, BBB_P9_42, 10*MHZ,10*MHZ), LinuxSPIDeviceDriver(2, 0, AP_HAL::SPIDevice_MPU6000, SPI_MODE_3, 8, BBB_P9_28, 500*1000, 20*MHZ), /* MPU9250 is restricted to 1MHz for non-data and interrupt registers */ LinuxSPIDeviceDriver(2, 0, AP_HAL::SPIDevice_MPU9250, SPI_MODE_3, 8, BBB_P9_23, 1*MHZ, 20*MHZ), LinuxSPIDeviceDriver(2, 0, AP_HAL::SPIDevice_Dataflash, SPI_MODE_3, 8, BBB_P8_12, 6*MHZ, 6*MHZ), }; #elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO LinuxSPIDeviceDriver LinuxSPIDeviceManager::_device[] = { /* MPU9250 is restricted to 1MHz for non-data and interrupt registers */ LinuxSPIDeviceDriver(0, 1, AP_HAL::SPIDevice_MPU9250, SPI_MODE_0, 8, SPI_CS_KERNEL, 1*MHZ, 20*MHZ), LinuxSPIDeviceDriver(0, 0, AP_HAL::SPIDevice_Ublox, SPI_MODE_0, 8, SPI_CS_KERNEL, 250*KHZ, 5*MHZ), }; #elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BBBMINI LinuxSPIDeviceDriver LinuxSPIDeviceManager::_device[] = { /* MPU9250 is restricted to 1MHz for non-data and interrupt registers */ LinuxSPIDeviceDriver(2, 0, AP_HAL::SPIDevice_MPU9250, SPI_MODE_3, 8, SPI_CS_KERNEL, 1*MHZ, 20*MHZ), LinuxSPIDeviceDriver(2, 1, AP_HAL::SPIDevice_MS5611, SPI_MODE_3, 8, SPI_CS_KERNEL, 10*MHZ,10*MHZ), }; #else // empty device table LinuxSPIDeviceDriver LinuxSPIDeviceManager::_device[0]; #endif #define LINUX_SPI_DEVICE_NUM_DEVICES ARRAY_SIZE(LinuxSPIDeviceManager::_device) // have a separate semaphore per bus LinuxSemaphore LinuxSPIDeviceManager::_semaphore[LINUX_SPI_MAX_BUSES]; LinuxSPIDeviceDriver::LinuxSPIDeviceDriver(uint16_t bus, uint16_t subdev, enum AP_HAL::SPIDevice type, uint8_t mode, uint8_t bitsPerWord, int16_t cs_pin, uint32_t lowspeed, uint32_t highspeed): _bus(bus), _subdev(subdev), _type(type), _mode(mode), _bitsPerWord(bitsPerWord), _lowspeed(lowspeed), _highspeed(highspeed), _speed(highspeed), _cs_pin(cs_pin), _cs(NULL) { } void LinuxSPIDeviceDriver::init() { // Init the CS if(_cs_pin != SPI_CS_KERNEL) { _cs = hal.gpio->channel(_cs_pin); if (_cs == NULL) { hal.scheduler->panic("Unable to instantiate cs pin"); } _cs->mode(HAL_GPIO_OUTPUT); _cs->write(1); // do not hold the SPI bus initially } else { // FIXME Anything we need to do here for kernel-managed CS? } } AP_HAL::Semaphore* LinuxSPIDeviceDriver::get_semaphore() { return LinuxSPIDeviceManager::get_semaphore(_bus); } bool LinuxSPIDeviceDriver::transaction(const uint8_t *tx, uint8_t *rx, uint16_t len) { return LinuxSPIDeviceManager::transaction(*this, tx, rx, len); } void LinuxSPIDeviceDriver::set_bus_speed(enum bus_speed speed) { if (speed == SPI_SPEED_LOW) { _speed = _lowspeed; } else { _speed = _highspeed; } } void LinuxSPIDeviceDriver::cs_assert() { LinuxSPIDeviceManager::cs_assert(_type); } void LinuxSPIDeviceDriver::cs_release() { LinuxSPIDeviceManager::cs_release(_type); } uint8_t LinuxSPIDeviceDriver::transfer(uint8_t data) { uint8_t v = 0; transaction(&data, &v, 1); return v; } void LinuxSPIDeviceDriver::transfer(const uint8_t *data, uint16_t len) { transaction(data, NULL, len); } void LinuxSPIDeviceManager::init(void *) { for (uint8_t i=0; i= LINUX_SPI_MAX_BUSES) { hal.scheduler->panic("SPIDriver: invalid bus number"); } char path[255]; snprintf(path, sizeof(path), "/dev/spidev%u.%u", _device[i]._bus + LINUX_SPIDEV_BUS_OFFSET, _device[i]._subdev); _device[i]._fd = open(path, O_RDWR); if (_device[i]._fd == -1) { printf("Unable to open %s - %s\n", path, strerror(errno)); hal.scheduler->panic("SPIDriver: unable to open SPI bus"); } #if SPI_DEBUGGING printf("Opened %s\n", path); fflush(stdout); #endif _device[i].init(); } } void LinuxSPIDeviceManager::cs_assert(enum AP_HAL::SPIDevice type) { uint16_t bus = 0, i; for (i=0; ipanic("Bad device type"); } // Kernel-mode CS handling if(_device[i]._cs_pin == SPI_CS_KERNEL) return; for (i=0; iread() != 1) { hal.console->printf("two CS enabled at once i=%u %u and %u\n", (unsigned)i, (unsigned)type, (unsigned)_device[i]._type); } } } for (i=0; iwrite(0); } } } void LinuxSPIDeviceManager::cs_release(enum AP_HAL::SPIDevice type) { uint16_t bus = 0, i; for (i=0; ipanic("Bad device type"); } // Kernel-mode CS handling if(_device[i]._cs_pin == SPI_CS_KERNEL) return; for (i=0; iwrite(1); } } bool LinuxSPIDeviceManager::transaction(LinuxSPIDeviceDriver &driver, const uint8_t *tx, uint8_t *rx, uint16_t len) { int r; // we set the mode before we assert the CS line so that the bus is // in the correct idle state before the chip is selected r = ioctl(driver._fd, SPI_IOC_WR_MODE, &driver._mode); if (r == -1) { hal.console->printf("SPI: error on setting mode\n"); return false; } cs_assert(driver._type); struct spi_ioc_transfer spi[1]; memset(spi, 0, sizeof(spi)); spi[0].tx_buf = (uint64_t)tx; spi[0].rx_buf = (uint64_t)rx; spi[0].len = len; spi[0].delay_usecs = 0; spi[0].speed_hz = driver._speed; spi[0].bits_per_word = driver._bitsPerWord; spi[0].cs_change = 0; if (rx != NULL) { // keep valgrind happy memset(rx, 0, len); } r = ioctl(driver._fd, SPI_IOC_MESSAGE(1), &spi); cs_release(driver._type); if (r == -1) { hal.console->printf("SPI: error on doing transaction\n"); return false; } return true; } /* return a SPIDeviceDriver for a particular device */ AP_HAL::SPIDeviceDriver *LinuxSPIDeviceManager::device(enum AP_HAL::SPIDevice dev) { for (uint8_t i=0; i