// Scheduler.cpp // // Flymaple Scheduler. // We use systick interrupt for the 1kHz ordinary timers. // We use a slightly higher priority HardwareTimer 2 for the failsafe callbacks // so a hung timer wont prevent the failsafe timer interrupt running // // Use of noInterrupts()/interrupts() on FLymaple ARM processor. // Please see the notes in FlymaplePortingNotes.txt in this directory for // information about disabling interrupts on Flymaple #include #if CONFIG_HAL_BOARD == HAL_BOARD_FLYMAPLE #include "Scheduler.h" #include #define millis libmaple_millis #define micros libmaple_micros #include "FlymapleWirish.h" #undef millis #undef micros // Flymaple: Force init to be called *first*, i.e. before static object allocation. // Otherwise, statically allocated objects (eg SerialUSB) that need libmaple may fail. __attribute__((constructor)) void premain() { init(); } // Not declared in any libmaple headers :-( extern "C" { void systick_attach_callback(void (*callback)(void)); }; // Use Maple hardware timer for 1khz failsafe timer // Caution, this must agree with the interrupt number passed to // nvic_irq_set_priority static HardwareTimer _failsafe_timer(2); using namespace AP_HAL_FLYMAPLE_NS; extern const AP_HAL::HAL& hal; AP_HAL::Proc FLYMAPLEScheduler::_failsafe = NULL; volatile bool FLYMAPLEScheduler::_timer_suspended = false; volatile bool FLYMAPLEScheduler::_timer_event_missed = false; volatile bool FLYMAPLEScheduler::_in_timer_proc = false; AP_HAL::MemberProc FLYMAPLEScheduler::_timer_proc[FLYMAPLE_SCHEDULER_MAX_TIMER_PROCS] = {NULL}; uint8_t FLYMAPLEScheduler::_num_timer_procs = 0; FLYMAPLEScheduler::FLYMAPLEScheduler() : _delay_cb(NULL), _min_delay_cb_ms(65535), _initialized(false) {} void FLYMAPLEScheduler::init(void* machtnichts) { delay_us(2000000); // Wait for startup so we have time to connect a new USB console // 1kHz interrupts from systick for normal timers systick_attach_callback(_timer_procs_timer_event); // Set up Maple hardware timer for 1khz failsafe timer // ref: http://leaflabs.com/docs/lang/api/hardwaretimer.html#lang-hardwaretimer _failsafe_timer.pause(); _failsafe_timer.setPeriod(1000); // 1000us = 1kHz _failsafe_timer.setChannelMode(TIMER_CH1, TIMER_OUTPUT_COMPARE);// Set up an interrupt on channel 1 _failsafe_timer.setCompare(TIMER_CH1, 1); // Interrupt 1 count after each update _failsafe_timer.attachInterrupt(TIMER_CH1, _failsafe_timer_event); _failsafe_timer.refresh();// Refresh the timer's count, prescale, and overflow _failsafe_timer.resume(); // Start the timer counting // We run this timer at a higher priority, so that a broken timer handler (ie one that hangs) // will not prevent the failsafe timer interrupt. // Caution: the timer number must agree with the HardwareTimer number nvic_irq_set_priority(NVIC_TIMER2, 0x14); } // This function may calls the _delay_cb to use up time void FLYMAPLEScheduler::delay(uint16_t ms) { uint32_t start = libmaple_micros(); while (ms > 0) { while ((libmaple_micros() - start) >= 1000) { ms--; if (ms == 0) break; start += 1000; } if (_min_delay_cb_ms <= ms) { if (_delay_cb) { _delay_cb(); } } } } uint32_t FLYMAPLEScheduler::millis() { return libmaple_millis(); } uint32_t FLYMAPLEScheduler::micros() { return libmaple_micros(); } uint64_t FLYMAPLEScheduler::millis64() { return millis(); } uint64_t FLYMAPLEScheduler::micros64() { // this is slow, but solves the problem with logging uint64_t timestamps uint64_t ret = millis(); ret *= 1000ULL; ret += micros() % 1000; return ret; } void FLYMAPLEScheduler::delay_microseconds(uint16_t us) { delay_us(us); } void FLYMAPLEScheduler::register_delay_callback(AP_HAL::Proc proc, uint16_t min_time_ms) { _delay_cb = proc; _min_delay_cb_ms = min_time_ms; } void FLYMAPLEScheduler::register_timer_process(AP_HAL::MemberProc proc) { for (int i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] == proc) { return; } } if (_num_timer_procs < FLYMAPLE_SCHEDULER_MAX_TIMER_PROCS) { /* this write to _timer_proc can be outside the critical section * because that memory won't be used until _num_timer_procs is * incremented. */ _timer_proc[_num_timer_procs] = proc; /* _num_timer_procs is used from interrupt, and multiple bytes long. */ noInterrupts(); _num_timer_procs++; interrupts(); } } void FLYMAPLEScheduler::register_io_process(AP_HAL::MemberProc k) { // IO processes not supported on FLYMAPLE } void FLYMAPLEScheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us) { /* XXX Assert period_us == 1000 */ _failsafe = failsafe; } void FLYMAPLEScheduler::suspend_timer_procs() { _timer_suspended = true; } void FLYMAPLEScheduler::resume_timer_procs() { _timer_suspended = false; if (_timer_event_missed == true) { _run_timer_procs(false); _timer_event_missed = false; } } bool FLYMAPLEScheduler::in_timerprocess() { return _in_timer_proc; } void FLYMAPLEScheduler::_timer_procs_timer_event() { _run_timer_procs(true); } // Called by HardwareTimer when a failsafe timer event occurs void FLYMAPLEScheduler::_failsafe_timer_event() { // run the failsafe, if one is setup if (_failsafe != NULL) _failsafe(); } void FLYMAPLEScheduler::begin_atomic() { noInterrupts(); } void FLYMAPLEScheduler::end_atomic() { interrupts(); } void FLYMAPLEScheduler::_run_timer_procs(bool called_from_isr) { _in_timer_proc = true; if (!_timer_suspended) { // now call the timer based drivers for (int i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i]) { _timer_proc[i](); } } } else if (called_from_isr) { _timer_event_missed = true; } _in_timer_proc = false; } bool FLYMAPLEScheduler::system_initializing() { return !_initialized; } void FLYMAPLEScheduler::system_initialized() { if (_initialized) { panic(PSTR("PANIC: scheduler::system_initialized called" "more than once")); } _initialized = true; } void FLYMAPLEScheduler::panic(const prog_char_t *errormsg, ...) { /* Suspend timer processes. We still want the timer event to go off * to run the _failsafe code, however. */ // REVISIT: not tested on FLYMAPLE va_list ap; _timer_suspended = true; va_start(ap, errormsg); hal.console->vprintf_P(errormsg, ap); va_end(ap); hal.console->printf_P("\n"); for(;;); } void FLYMAPLEScheduler::reboot(bool hold_in_bootloader) { hal.uartA->println_P(PSTR("GOING DOWN FOR A REBOOT\r\n")); hal.scheduler->delay(100); nvic_sys_reset(); } #endif